Optoelettronica 19.2.2021

Esercizio 1:

Un laser He:Ne ($m_{He} = 0.66 \cdot 10^{-26}$ kg e $m_{Ne} = 3.35 \cdot 10^{-26}$ kg) emette alla lunghezza d'onda $\lambda_0 = 544$ nm. Durante il funzionamento il gas si trova ad una temperatura T = 100° C. Il laser ha un guadagno di soglia pari a $g_{th} = 0.3$ m⁻¹ e perdite logaritmiche $\alpha_S = 0.04$ m⁻¹. Il laser è realizzato tramite una cavità di Fabry-Perot costituita da due specchi con riflettività rispettivamente $R_1 = 0.96$ e $R_2 = 0.99$.

- a) Calcolare l'allargamento della riga di emissione dovuto all'effetto Doppler.
- b) Calcolare la minima lunghezza della cavità che garantisce l'accensione del laser.
- c) Stimare il numero di modi nello spettro di emissione.

Esercizio 2:

Si consideri un LED con layer attivo in Nitruro di Gallio e Indio (InGaN). Il gap energetico è E_g = 2.8 eV.

- a) Calcolare la lunghezza d'onda di picco emessa.
- b) Si valuti la larghezza a metà altezza dello spettro di emissione.
- c) Sapendo che l'energy gap dipende dalla temperatura secondo la relazione $\frac{dEg}{dT} = -4.3 \cdot 10^{-4} \frac{eV}{K}$, si dica se il LED può emettere alla lunghezza d'onda $\lambda = 550$ nm.

Esercizio 3:

Su un fotodiodo PIN in Si di diametro d = 150 μ m e spessore del layer intrinseco w = 200 μ m incide della radiazione elettromagnetica a λ = 800 nm di potenza P_0 = 80 nW. Il fotodiodo ha un coefficiente di assorbimento pari a α = 0.1 μ m⁻¹.

- a) Calcolare la corrente fotogenerata assumendo che non ci sia coating antiriflesso all'interfaccia tra semiconduttore ($n_s = 3.5$) e aria.
- b) Calcolare il diametro massimo del fotodiodo per avere una capacità inferiore a 1 pF.
- c) Determinare la resistenza di carico del fotodiodo che permette di avere una costante di tempo di risposta del circuito fotorivelatore uguale alla costante di tempo di risposta del dispositivo.

Domande di teoria:

- a) Si discutano gli effetti di dispersione in una fibra ottica, distinguendo i vari contributi alla dispersione.
- Si illustrino i meccanismi di generazione e ricombinazione nei semiconduttori, discutendo le rispettive applicazioni in optoelettronica e i requisiti in termini di band gap.

Costanti fisiche:

 $m_0 = 9.109 \cdot 10^{-31} \text{ kg}$ massa dell'elettrone costante di Planck $h = 6.626 \cdot 10^{-34} \text{ J s}$ carica elettronica $e = 1.602 \cdot 10^{-19} C$ $k_B = 1.381 \cdot 10^{-23} \text{ J K}^{-1}$ costante di Boltzmann $c = 2.998 \cdot 10^8 \text{ m s}^{-1}$ velocità della luce $\epsilon_0 = 8.85419 \cdot 10^{-12} \; F \; m^{-1}$ costante dielettrica nel vuoto Si costante dielettrica relativa ε_r 11.7 velocità di saturazione vsat [cm s-1] 10^{7} 1.45×10^{10} concentrazione intrinseca ni [cm-3] gap di energia E_G [eV] 1.12 2.8×10^{19} densità di stati effettiva in banda di conduzione Nc [cm-3] densità di stati effettiva in banda di valenza N_√ [cm⁻³] 1.04 x 10¹⁹

Optoelectronics 19.2.2021

Exercise 1:

Consider a He:Ne laser ($m_{He} = 0.66 \cdot 10^{-26} \, kg$, $m_{Ne} = 3.35 \cdot 10^{-26} \, kg$) emitting at $\lambda_0 = 544 \, nm$ (free space wavelength). The laser operates at the temperature $T = 100 \, ^{\circ}C$ and has a threshold gain $g_{th} = 0.3 \, m^{-1}$ and internal losses $\alpha_S = 0.04 \, m^{-1}$. The laser is made by using a Fabry-Perot optical cavity consisting of two mirrors with reflectance $R_1 = 0.96$ and $R_2 = 0.99$.

- a) Calculate the Doppler broadened linewidth.
- b) Calculate the minimum length that the cavity must have in order to guarantee the laser operation.
- c) Calculate the number of optical modes in the output spectrum.

Exercise 2:

Consider a LED with an active layer made by InGaN. The energy gap of the material is $E_g = 2.8eV$.

- a) Calculate the peak wavelength of the LED emission.
- b) Evaluate the spectral linewidth FWHM $\Delta\lambda_{1/2}$.
- c) Assuming that the energy gap E_g varies with temperature according to the law $\frac{dEg}{dT} = -4.3 \cdot 10^{-4} \frac{eV}{K}$, calculate if the LED can emit at the wavelength $\lambda = 550$ nm.

Exercise 3:

Consider a silicon PIN photodiode with a diameter d = 150 μ m and the intrinsic layer with a width w = 20 μ m. The photodiode is illuminated with an electromagnetic radiation at λ = 800 nm and optical power P₀ = 80 nW. The photodiode has an absorbing coefficient α = 0.1 μ m⁻¹.

- a) Determine the photogenerated current assuming no antireflection coating between the semiconductor and air.
- b) Calculate the maximum diameter of the photodiode which limits its capacitance below 1 pF.
- c) Determine the load resistance for having an RC time constant equal to the photodiode response.

Theory questions:

- a) Discuss the effects of dispersion in an optical fiber, discriminating all various contributions to dispersion.
- b) Illustrate the mechanisms of generation and recombination in semiconductors, discussing their respective applications in optoelectronics and the requirements in terms of band gap.

Physical constants:

```
electron rest mass
                                                                                                          m_0 = 9.109 \cdot 10^{-31} \text{ kg}
                                                                                                          h = 6.626 \cdot 10^{-34} \text{ J s}
Planck constant
                                                                                                          e = 1.602 \cdot 10^{-19} C
electron charge
                                                                                                          k_B = 1.381 \cdot 10^{-23} \text{ J K}^{-1}
Boltzmann constant
                                                                                                          c = 2.998 \cdot 10^8 \text{ m s}^{-1}
speed of light
vacuum permittivity
                                                                                                          \epsilon_0 = 8.85419 \cdot 10^{-12} \text{ F m}^{-1}
                                                                                                          Si
relative permittivity \varepsilon_r
                                                                                                          11.7
saturation electric field [kV cm-1]
                                                                                                          20
saturation velocity [cm s<sup>-1</sup>]
                                                                                                          10^{7}
intrinsic concentration n<sub>i</sub> [cm<sup>-3</sup>]
                                                                                                           1.45 x 10<sup>10</sup>
energy gap E<sub>G</sub> [eV]
                                                                                                           1.12
                                                                                                          2.8 x 10<sup>19</sup>
effective density of states in the conduction band N<sub>C</sub> [cm<sup>-3</sup>]
effective density of states in the valence band N<sub>V</sub> [cm<sup>-3</sup>]
                                                                                                          1.04 x 10<sup>19</sup>
```