Elettronica dello Stato Solido Lezione 6: Potenziali monodimensionali non confinati

Daniele lelmini

DEIB – Politecnico di Milano daniele.ielmini@polimi.it

Outline

- La particella libera
- Gradino di potenziale
- Barriera di potenziale
- Tunneling
- Stati non stazionari
- Conclusioni

Equazione di Schrödinger

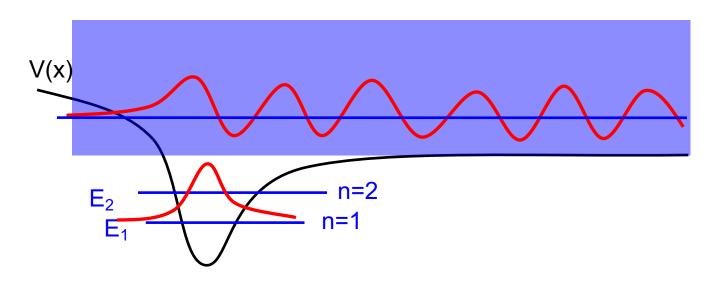
- Tempo dipendente: $\left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V_0 \right) \Psi(x,t) = i\hbar \frac{\partial \Psi(x,t)}{\partial t}$
- Tempoindipendente: $\left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \right) \psi(x) = E\psi(x)$

$$\Psi(\mathbf{x}, \mathbf{t}) = \psi(\mathbf{x})\varphi(\mathbf{t}) = \psi(\mathbf{x})\varphi(0)e^{-i\frac{E}{\hbar}\mathbf{t}}$$

- Funzione $\Psi(x,t) = funzione d'onda$
- Funzione ψ(x) = <u>autofunzione</u> (eigenfunction, dal tedesco eigen = caratteristico)

Autofunzioni confinate e non confinate

- Stati confinati → set discreto di autovalori e autofunzioni
- Stati non confinati → set continuo di autovalori/autofunzioni
- In questi casi l'energia è un dato noto (e.g. potenziale di accelerazione di un elettrone)



La particella libera

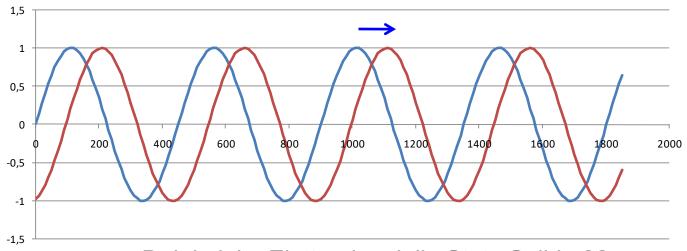
- V = const → non ci sono forze agenti sulla particella, classicamente si prevede velocità = costante ed energia cinetica = costante
- Dato che il potenziale V è definito a meno di una costante, scegliamo V = 0
- Equazione: $-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x) = E\psi(x)$
- Per ogni autovalore E>0, l'autofunzione (soluzione generale) è: <sub>ψ(x)= Ae^{ikx} + Be^{-ikx}
 </sub>
- Dove $k = (2mE)^{1/2}/\hbar$

Onda viaggiante

 Prendiamo ad esempio la componente Ae^{ikx}, la funzione d'onda si ottiene come:

$$\Psi(\mathbf{x}, \mathbf{t}) = \psi(\mathbf{x}) \mathbf{e}^{-i\omega t} = \mathbf{A} \mathbf{e}^{i(k\mathbf{x} - \omega t)}$$

 Questa è un onda viaggiante verso gli x crescenti, infatti la parte reale è data da Acos(kx-ωt), dove i picchi si spostano con legge kx-ωt = 2nπ, cioè x=x₀+ωt/k=x₀+v_ft



Valore d'aspettazione di p_x

• Per convincerci del moto della particella, calcoliamo $< p_x > : < p_x > = \int_{\alpha} \Psi^*(x,t) \hat{p}_x \Psi(x,t) dx$

• con
$$\hat{\boldsymbol{p}}_{\boldsymbol{x}}\Psi(\boldsymbol{x},\boldsymbol{t}) = -i\hbar \frac{\partial}{\partial \boldsymbol{x}} \boldsymbol{A} e^{i(\boldsymbol{k}\boldsymbol{x}-\omega\boldsymbol{t})} = \hbar \boldsymbol{k} \Psi(\boldsymbol{x},\boldsymbol{t})$$

• e quindi: $\langle p_x \rangle = \hbar k \int \Psi^*(x,t) \Psi(x,t) dx = \hbar k = \sqrt{2mE}$ cioè il momento atteso classicamente per una particella con energia cinetica E. (Nota che l'integrale della densità di probabilità $|\Psi(x,t)|^2$, cioè la probabilità di trovare la particella nello spazio, deve essere uguale a uno)

Onda verso x decrescenti

- Invece la componente Be^{-ikx}, che dà funzione d'onda: $\Psi(\mathbf{x}, \mathbf{t}) = \psi(\mathbf{x}) \mathbf{e}^{-i\omega t} = \mathbf{B} \mathbf{e}^{i(-k\mathbf{x}-\omega t)}$ si sposta verso sinistra
- In questo caso il momento è dato da:

$$\langle \boldsymbol{p}_{\boldsymbol{x}} \rangle = -\hbar \boldsymbol{k} \int_{-\infty}^{+\infty} \Psi^*(\boldsymbol{x}, \boldsymbol{t}) \Psi(\boldsymbol{x}, \boldsymbol{t}) d\boldsymbol{x} = -\hbar \boldsymbol{k} = -\sqrt{2mE}$$

 In entrambi i casi (onda verso dx e sx) il momento è perfettamente determinato, senza incertezza, dato che p=(2mE)^{1/2} ed E = costante nota → determinazione completa del momento, è compatibile con il principio di Heisenberg?

Indeterminazione spaziale

 Che forma assume la densità di probabilità per le due onde viaggianti?

$$\Psi^*(\mathbf{x}, \mathbf{t})\Psi(\mathbf{x}, \mathbf{t}) = \mathbf{A}^* \mathbf{e}^{-i(\mathbf{k}\mathbf{x} - \omega \mathbf{t})} \mathbf{A} \mathbf{e}^{i(\mathbf{k}\mathbf{x} - \omega \mathbf{t})} = \mathbf{A}^* \mathbf{A} = |\mathbf{A}|^2$$

- Costante: la particella è equiprobabilmente delocalizzata sull'intero asse x
- Compatibile con il principio di indeterminazione: $\Delta p=0$, $\Delta x=\infty$
- Problema: normalizzazione, essendo $\int |A|^2 dx = \infty$ mentre vorremmo che sia unitario. In realtà non è necessario normalizzare perché tutte le

grandezze interessanti (e.g. p, E) risultano indipendenti da A

Flusso di probabilità

$$\mathbf{j} = \frac{\hbar}{2m\mathbf{i}} \left(\Psi^*(\mathbf{x}, \mathbf{t}) \frac{\partial}{\partial \mathbf{x}} \Psi(\mathbf{x}, \mathbf{t}) - \Psi(\mathbf{x}, \mathbf{t}) \frac{\partial}{\partial \mathbf{x}} \Psi^*(\mathbf{x}, \mathbf{t}) \right)$$

• Onda verso x crescenti: $\Psi(x,t) = Ae^{i(kx-\omega t)}$

$$\mathbf{j} = \frac{\hbar}{2m\mathbf{i}} \left(\mathbf{A} * \mathbf{e}^{-\mathbf{i}(\mathbf{k}\mathbf{x} - \omega \mathbf{t})} \mathbf{i} \mathbf{k} \mathbf{A} \mathbf{e}^{\mathbf{i}(\mathbf{k}\mathbf{x} - \omega \mathbf{t})} + \mathbf{A} \mathbf{e}^{\mathbf{i}(\mathbf{k}\mathbf{x} - \omega \mathbf{t})} \mathbf{i} \mathbf{k} \mathbf{A} * \mathbf{e}^{-\mathbf{i}(\mathbf{k}\mathbf{x} - \omega \mathbf{t})} \right) = \frac{\hbar \mathbf{k}}{\mathbf{m}} \left| \mathbf{A} \right|^{2}$$

• Onda verso x decrescenti: $\Psi(x,t) = Be^{-i(kx+\omega t)}$

$$\mathbf{j} = \frac{\hbar}{2m\mathbf{i}} \left(-\mathbf{B} * \mathbf{e}^{i(\mathbf{k}\mathbf{x} + \omega t)} \mathbf{i} \mathbf{k} \mathbf{B} \mathbf{e}^{-i(\mathbf{k}\mathbf{x} + \omega t)} - \mathbf{B} \mathbf{e}^{-i(\mathbf{k}\mathbf{x} + \omega t)} \mathbf{i} \mathbf{k} \mathbf{B} * \mathbf{e}^{i(\mathbf{k}\mathbf{x} + \omega t)} \right) = -\frac{\hbar \mathbf{k}}{m} |\mathbf{B}|^{2}$$

Prefattore = p_x/m = velocità di gruppo

Velocità di fase e di gruppo

Velocità di fase dell'onda:

se dell'onda:
$$\Psi(x,t) = Ae^{i(kx-\omega t)}$$

$$V_f = \frac{\omega}{k} = \frac{E}{\hbar k} = \frac{\hbar k}{2m}$$

 Velocità di gruppo è la velocità che avrebbe un pacchetto d'onde centrato in k

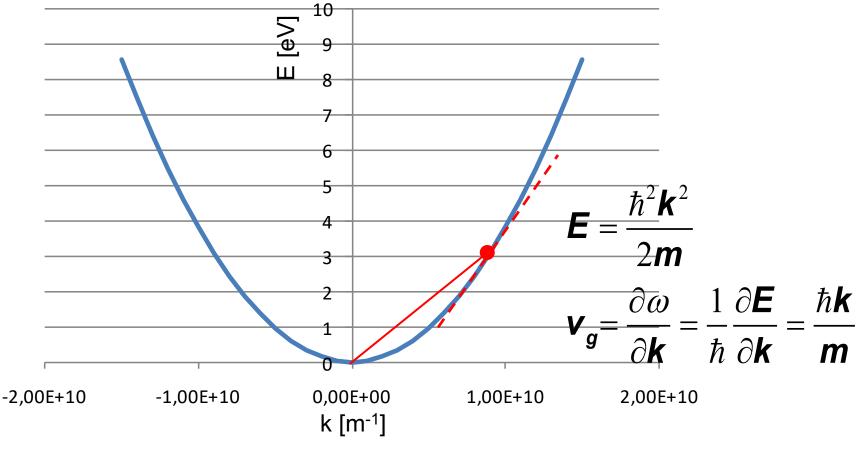
•
$$\mathbf{t} = 0$$

$$\mathbf{f}(\mathbf{x}, \mathbf{t}) = \mathbf{e}^{i(\mathbf{k}_{1}\mathbf{x} - \omega_{1}\mathbf{t})} + \mathbf{e}^{i(\mathbf{k}_{2}\mathbf{x} - \omega_{2}\mathbf{t})}$$
• $\mathbf{t} = \Delta \mathbf{t}$
$$= \mathbf{e}^{i(\mathbf{k}_{1}\mathbf{x} - \omega_{1}\mathbf{t})} \left(1 + \mathbf{e}^{i(\Delta \mathbf{k}\mathbf{x} - \Delta \omega \mathbf{t})} \right)$$

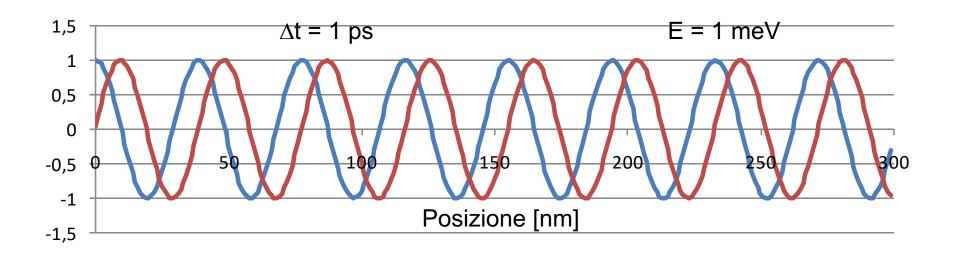
$$|\mathbf{f}(\mathbf{x}, \mathbf{t})|^{2} = \left| 1 + \mathbf{e}^{i\Delta \mathbf{k}(\mathbf{x} - \frac{\Delta \omega}{\Delta \mathbf{k}}\mathbf{t})} \right|^{2} \rightarrow \mathbf{v}_{g} = \frac{\partial \omega}{\partial \mathbf{k}} = \frac{1}{\hbar} \frac{\partial \mathbf{E}}{\partial \mathbf{k}}$$

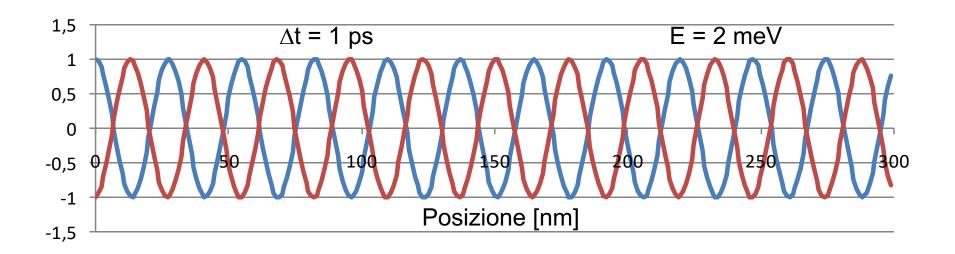
Relazione di dispersione

- È la relazione che lega E (oppure ω) a k
- È una parabola per la particella libera
- Tutti i valori sono possibili (continuo)



Due esempi





Funzioni d'onda libera

• Onda viaggiante verso x crescenti $\Psi(\mathbf{x}, \mathbf{t}) = \psi(\mathbf{x})\mathbf{e}^{-i\omega t} = \mathbf{e}^{i(\mathbf{k}\mathbf{x} - \omega t)}$

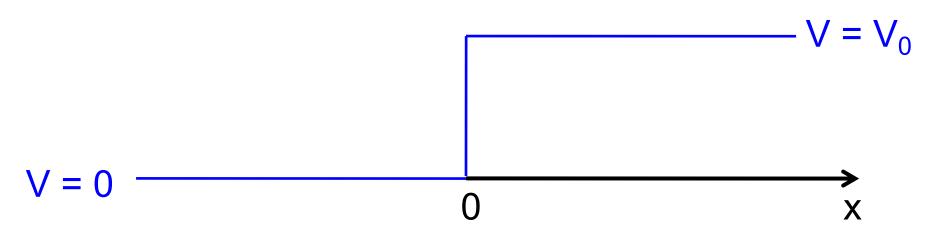
 Onde viaggianti verso x crescenti e decrescenti di pari ampiezza

$$\Psi(\mathbf{x},\mathbf{t}) = \psi(\mathbf{x})\mathbf{e}^{-i\omega t} = \mathbf{e}^{i(k\mathbf{x}-\omega t)} + \mathbf{e}^{i(-k\mathbf{x}-\omega t)}$$

 Onde viaggianti verso x crescenti e decrescenti di diversa ampiezza

$$\Psi(\mathbf{x},\mathbf{t}) = \psi(\mathbf{x})\mathbf{e}^{-i\omega\mathbf{t}} = \left(2\mathbf{e}^{i\mathbf{k}\mathbf{x}} + \mathbf{e}^{-i\mathbf{k}\mathbf{x}}\right)\mathbf{e}^{-i\omega\mathbf{t}}$$

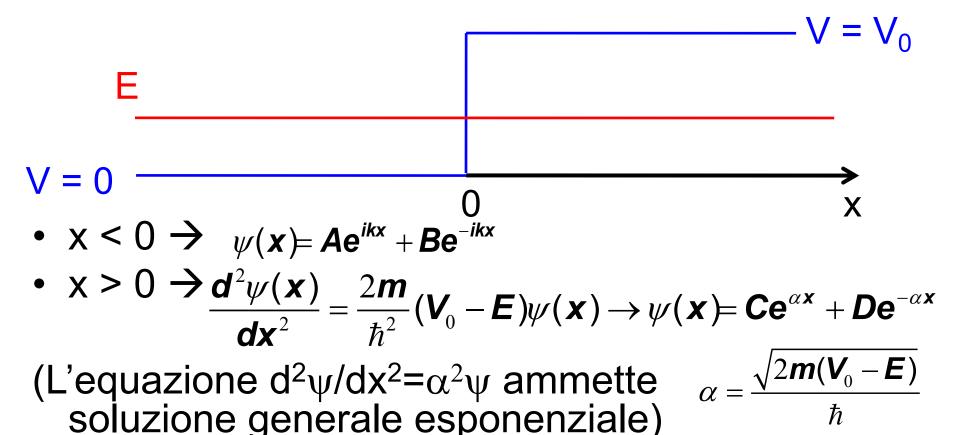
Gradino di potenziale



• V = 0 per x < 0
• V = V₀ per x > 0
$$-\frac{\hbar^2}{2m} \frac{d^2 \psi(x)}{dx^2} + V_0(x) \psi(x) = E \psi(x)$$

- $x<0 \rightarrow autofunzione \psi(x) = Ae^{ikx} + Be^{-ikx}$
- x>0 → dipende dal segno di E-V₀
- Per E<V₀, la regione a x>0 è classicamente <u>proibita</u>

Caso E<V₀



Nota: l'esponenziale crescente ($\psi \rightarrow \infty$ per $x \rightarrow +\infty$) deve essere scartato, per tenere finita l'autofunzione \rightarrow C = 0

Condizioni al contorno

 L'autofunzione e la sua derivata devono essere continue, questo ci dà due condizioni al contorno per fissare due delle tre costanti di integrazione

$$\frac{\psi(0^{-})=\psi(0^{+})}{\left.\frac{d\psi}{dx}\right|_{0^{-}}} = \frac{d\psi}{dx}\Big|_{0^{+}}$$

$$Ae^{ik^{*}0} + Be^{-ik^{*}0} = De^{-\alpha^{*}0} \rightarrow A + B = D$$

$$ikAe^{ik^{*}0} - ikBe^{-ik^{*}0} = -\alpha De^{-\alpha^{*}0} \rightarrow ikA - ikB = -\alpha D$$

• Diventa $\begin{cases} A + B = D \\ A - B = i \frac{\alpha}{k} D \end{cases}$ e quindi $\begin{cases} A = \frac{k + i\alpha}{2k} D \\ B = \frac{k - i\alpha}{2k} D \end{cases}$

• D è lasciato arbitrario

$$\begin{cases}
\mathbf{A} = \frac{\mathbf{k} + \mathbf{i}\alpha}{2\mathbf{k}} \mathbf{D} \\
\mathbf{B} = \frac{\mathbf{k} - \mathbf{i}\alpha}{2\mathbf{k}} \mathbf{D}
\end{cases}$$

Funzione d'onda

La funzione d'onda risulta:

onda viaggiante onda viaggiante verso x decrescenti verso x crescenti $\psi(\mathbf{x} < 0) = \frac{\mathbf{k} + \mathbf{i}\alpha}{2\mathbf{k}} \mathbf{D} \mathbf{e}^{\mathbf{i}(\mathbf{k}\mathbf{x} - \omega t)} + \frac{\mathbf{k} - \mathbf{i}\alpha}{2\mathbf{k}} \mathbf{D} \mathbf{e}^{-\mathbf{i}(\mathbf{k}\mathbf{x} + \omega t)}$ $\psi(\mathbf{x} > 0) = \mathbf{D} \mathbf{e}^{-\alpha \mathbf{x}} \mathbf{e}^{-i\omega t}$

- Si può leggere come onda viaggiante verso destra che viene riflessa dal gradino
- Qual è il rapporto tra la componente riflessa e quella incidente? Rapporto tra i coefficienti in modulo quadro: • Viene riflessa interamente! $\frac{|(\mathbf{k} - \mathbf{i}\alpha)/2\mathbf{k}|^2}{|(\mathbf{k} + \mathbf{i}\alpha)/2\mathbf{k}|^2} = 1$

Onda stazionaria

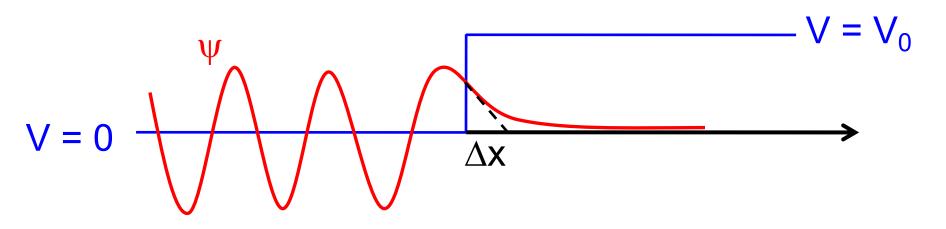
Sviluppando i conti nell'autofunzione a
 x<0:

$$\psi(\mathbf{x}) = \frac{\mathbf{k} + i\alpha}{2\mathbf{k}} \mathbf{D} \mathbf{e}^{i\mathbf{k}\mathbf{x}} + \frac{\mathbf{k} - i\alpha}{2\mathbf{k}} \mathbf{D} \mathbf{e}^{-i\mathbf{k}\mathbf{x}} = \mathbf{D} \left(\cos \mathbf{k} \mathbf{x} - \frac{\alpha}{\mathbf{k}} \sin \mathbf{k} \mathbf{x} \right)$$

- È un'onda stazionaria, perché una volta moltiplicata per la parte temporale e^{-iωt} i nodi sono fermi, solo l'ampiezza oscilla
- Onde viaggianti in direzione opposta con uguale lunghezza d'onda e ampiezza danno sempre luogo a un'onda stazionaria (effetto di interferenza)

Penetrazione nel gradino

- Classicamente ci aspettiamo che la probabilità di trovare la particella a x>0 sia nulla
- In realtà c'è probabilità finita di trovare la particella: risultato unicamente prevedibile dalla meccanica quantistica
- Una stima della penetrazione è data dalla costante di decadimento della funzione esponenziale $\Delta x = \alpha^{-1} = \hbar/(2m(V_0-E))^{1/2}$



Penetrazione nel gradino

- Indeterminazione: $\Delta p \approx \hbar/\Delta x = (2m(V_0-E))^{1/2}$, e quindi l'indeterminazione sull'energia è pari a $\Delta E = \Delta p^2/2m = V_0-E \rightarrow la penetrazione della barriera si giustifica con un'indeterminazione sull'energia totale, che potrebbe essere quindi maggiore di quella potenziale nel breve tempo della penetrazione nel gradino$
- L'effetto di penetrazione porta al tunneling, effetto prettamente quantistico in cui le particelle possono attraversare regioni classicamente proibite (e.g. l'ossido di gate in un transistore MOS)

Caso E>V₀

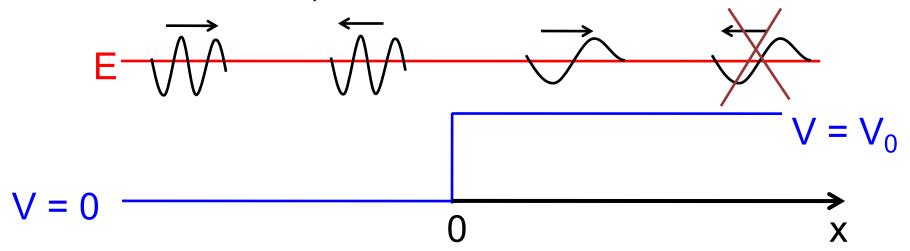
V = 0 $V = V_0$

- Ora l'equazione di Schrödinger è formalmente la stessa per x>0 e x<0:
- $\mathbf{x} < 0 \rightarrow \frac{\mathbf{d}^2 \psi(\mathbf{x})}{\mathbf{d}\mathbf{x}^2} = -\frac{2\mathbf{m}}{\hbar^2} \mathbf{E} \psi(\mathbf{x}) \rightarrow \psi(\mathbf{x}) = \mathbf{A} \mathbf{e}^{i\mathbf{k}\mathbf{x}} + \mathbf{B} \mathbf{e}^{-i\mathbf{k}\mathbf{x}}$
- $\mathbf{x} > 0 \rightarrow \frac{\mathbf{d}^2 \psi(\mathbf{x})}{\mathbf{d}\mathbf{x}^2} = -\frac{2\mathbf{m}}{\hbar^2} (\mathbf{E} \mathbf{V}_0) \psi(\mathbf{x}) \rightarrow \psi(\mathbf{x}) = \mathbf{C} \mathbf{e}^{i\mathbf{k}'\mathbf{x}} + \mathbf{D} \mathbf{e}^{-i\mathbf{k}'\mathbf{x}}$

$$\boldsymbol{k} = \frac{\sqrt{2m\boldsymbol{E}}}{\hbar}, \boldsymbol{k'} = \frac{\sqrt{2m(\boldsymbol{E} - \boldsymbol{V}_0)}}{\hbar}$$

D. Ielmini – Elettronica dello Stato Solido 06

Incidente, riflessa e trasmessa



- Le funzioni sono finite (armoniche)
- Fisicamente, possiamo immaginarci una particella proveniente da x<0 che incide sul gradino, con probabilità finita di riflessione e di trasmissione a x>0
- Tuttavia non c'è modo di avere componente viaggiante verso sinistra da x>0 → D=0

Condizioni al contorno

Continuità della ψ e della sua derivata:

$$\begin{cases} \psi(0^{-}) = \psi(0^{+}) \\ \frac{d\psi}{dx} \Big|_{0^{-}} = \frac{d\psi}{dx} \Big|_{0^{+}} \end{cases} \begin{cases} Ae^{ik^{*}0} + Be^{-ik^{*}0} = Ce^{ik^{*}0} \rightarrow A + B = C \\ ikAe^{ik^{*}0} - ikBe^{-ik^{*}0} = ik'Ce^{ik'^{*}0} \rightarrow ikA - ikB = ik'C \end{cases}$$

$$\begin{cases}
A + B = C \\
A - B = \frac{k'}{k}C
\end{cases}$$

$$\begin{cases} A + B = C \\ A - B = \frac{k'}{k}C \end{cases}$$

$$\begin{cases} C = \frac{2k}{k + k'}A \\ B = \frac{k - k'}{k + k'}A \end{cases}$$

Funzione d'onda

•
$$\chi < 0 \rightarrow \psi(x) = Ae^{i(kx-\omega t)} + \frac{k-k'}{k+k'}Ae^{-i(kx+\omega t)}$$

•
$$\chi > 0 \rightarrow \psi(x) = \frac{2k}{k + k'} Ae^{i(k'x - \omega t)}$$

- Componente riflessa? $r = \left(\frac{B}{A}\right)^2 = \left(\frac{k k'}{k + k'}\right)^2$
- Le informazioni rilevanti sono sempre indipendenti dalla costante d'integrazione A
- Nota: classicamente, la particella non verrebbe riflessa, la riflessione è un risultato puramente quantistico

Componente trasmessa

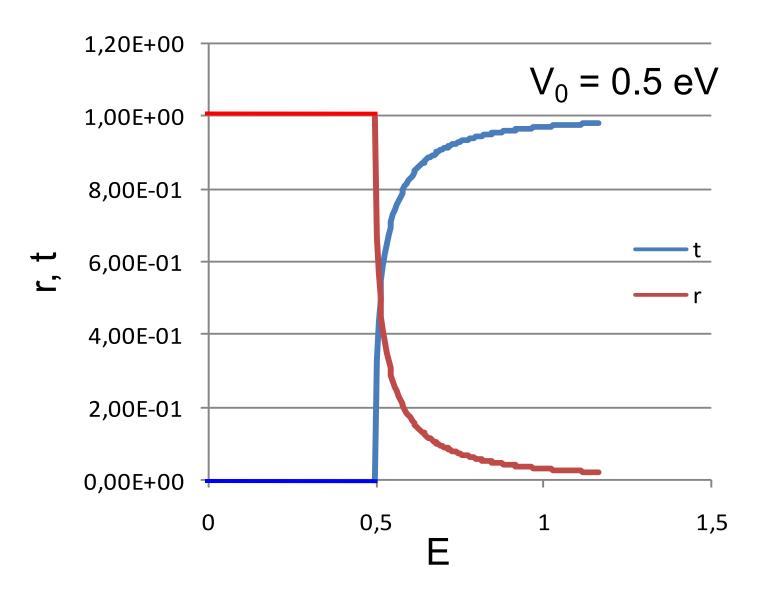
 Componente trasmessa? Il flusso normalmente è proporzionale sia al modulo quadro della funzione, sia alla velocità di propagazione, proporzionale a k (x<0) o k'

$$(x>0) \rightarrow t = \frac{k'}{k} \left(\frac{C}{A}\right)^2 = \frac{k'}{k} \left(\frac{2k}{k+k'}\right)^2$$

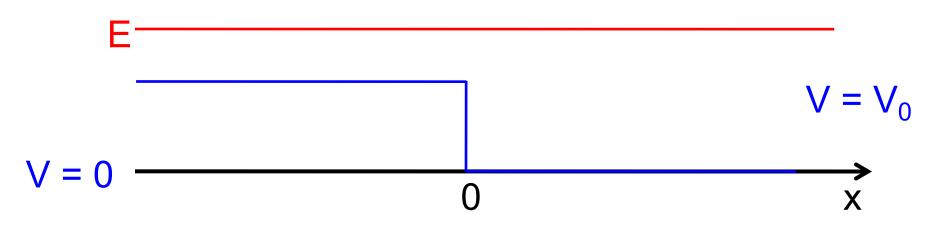
- Nota: la conservazione delle particelle richiederebbe che r+t (frazione riflessa + trasmessa) = 1
- Infatti:

$$r + t = \left(\frac{k - k'}{k + k'}\right)^2 + \frac{k'}{k} \left(\frac{2k}{k + k'}\right)^2 = \frac{k^2 + k'^2 - 2kk' + 4kk'}{(k + k')^2} = 1$$

Trasmissione e riflessione



Caso E>V₀



 Si verifichi che la soluzione è la stessa del gradino precedente

Funzione d'onda

Funzione d'onda su gradino (E=25 meV, V₀=35 meV)

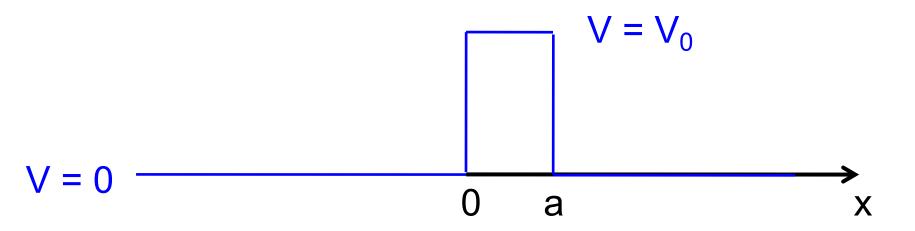
$$\psi(\mathbf{x} < 0) = \frac{\mathbf{k} + i\alpha}{2\mathbf{k}} \mathbf{D} \mathbf{e}^{i(\mathbf{k}\mathbf{x} - \omega t)} + \frac{\mathbf{k} - i\alpha}{2\mathbf{k}} \mathbf{D} \mathbf{e}^{-i(\mathbf{k}\mathbf{x} + \omega t)}$$
$$\psi(\mathbf{x} > 0) = \mathbf{D} \mathbf{e}^{-\alpha \mathbf{x}} \mathbf{e}^{-i\omega t}$$

• Funzione d'onda su gradino (E=45 meV, V₀=35 meV)

$$\psi(\mathbf{x} < 0) = \mathbf{A}\mathbf{e}^{i(\mathbf{k}\mathbf{x} - \omega t)} + \frac{\mathbf{k} - \mathbf{k}'}{\mathbf{k} + \mathbf{k}'} \mathbf{A}\mathbf{e}^{-i(\mathbf{k}\mathbf{x} + \omega t)}$$
$$\psi(\mathbf{x} > 0) = \frac{2\mathbf{k}}{\mathbf{k} + \mathbf{k}'} \mathbf{A}\mathbf{e}^{i(\mathbf{k}'\mathbf{x} - \omega t)}$$

· Idem, ma con gradino negativo

Barriera di potenziale



- V = 0 per x < 0 e x > a
- $V = V_0 \text{ per } 0 < x < a$
- x<0 e $x>a \rightarrow \psi(x) = Ae^{ikx} + Be^{-ikx}$
- 0<x<a → dipende dal segno di E-V₀

Caso E < V_0

$$\psi(\mathbf{x} < 0) = \mathbf{A}\mathbf{e}^{i\mathbf{k}\mathbf{x}} + \mathbf{B}\mathbf{e}^{-i\mathbf{k}\mathbf{x}}$$

$$\psi(0 < \mathbf{x} < \mathbf{a}) = \mathbf{C}\mathbf{e}^{-a\mathbf{x}} + \mathbf{D}\mathbf{e}^{a\mathbf{x}}$$

$$\psi(\mathbf{x} > \mathbf{a}) = \mathbf{E}\mathbf{e}^{i\mathbf{k}\mathbf{x}} + \mathbf{F}\mathbf{e}^{-i\mathbf{k}\mathbf{x}}$$

$$\mathbf{E} < \mathbf{V}_0$$

$$0 \quad \mathbf{a} \quad \mathbf{x}$$

- F=0 perché escludiamo componente incidente da destra
- Non possiamo più annullare l'esponenziale crescente → D≠0
- 4 condizioni al contorno per 5 costanti di integrazione

Condizioni al contorno

 L'autofunzione e la sua derivata devono essere continue in x=0 and x=a

$$\begin{cases} \psi(0^{-}) = \psi(0^{+}) \\ \frac{d\psi}{dx} \Big|_{0^{-}} = \frac{d\psi}{dx} \Big|_{0^{+}} \end{cases} \begin{cases} Ae^{ik^{*}0} + Be^{-ik^{*}0} = Ce^{-\alpha^{*}0} + De^{\alpha^{*}0} \\ ikAe^{ik^{*}0} - ikBe^{-ik^{*}0} = -\alpha Ce^{-\alpha^{*}0} + \alpha De^{\alpha^{*}0} \end{cases}$$
$$\begin{cases} Ce^{-\alpha^{*}a} + De^{\alpha^{*}a} = Ee^{ik^{*}a} \\ -\alpha Ce^{-\alpha^{*}a} + \alpha De^{\alpha^{*}a} = ikEe^{ik^{*}a} \end{cases}$$

Costanti di integrazione

$$B = -i \frac{k^2 + \alpha^2}{\alpha k} A \frac{\sinh \alpha a}{2 \cosh \alpha a + i \frac{\alpha^2 - k^2}{\alpha k} \sinh \alpha a}$$

$$C = E \frac{e^{\alpha a} e^{ika}}{2} \left(1 - \frac{ik}{\alpha} \right)$$

$$D = E \frac{e^{-\alpha a} e^{ika}}{2} \left(1 + \frac{ik}{\alpha} \right)$$

$$E = 2A \frac{e^{-ika}}{2 \cosh \alpha a + i \frac{\alpha^2 - k^2}{\alpha k} \sinh \alpha a}$$

Frazioni riflesse e trasmesse

$$r = \left| \frac{\mathbf{B}}{\mathbf{A}} \right|^{2} = \frac{\left(\frac{\mathbf{k}^{2} + \alpha^{2}}{\alpha \mathbf{k}} \right)^{2}}{4 \cosh^{2} \alpha \mathbf{a} + \left(\frac{\alpha^{2} - \mathbf{k}^{2}}{\alpha \mathbf{k}} \right)^{2} \sinh^{2} \alpha \mathbf{a}}$$

$$t = \left| \frac{\mathbf{E}}{\mathbf{A}} \right|^{2} = \frac{4}{4 \cosh^{2} \alpha \mathbf{a} + \left(\frac{\alpha^{2} - \mathbf{k}^{2}}{\alpha \mathbf{k}} \right)^{2} \sinh^{2} \alpha \mathbf{a}} = \frac{1}{1 + \left(\frac{\alpha^{2} + \mathbf{k}^{2}}{2\alpha \mathbf{k}} \right)^{2} \sinh^{2} \alpha \mathbf{a}}$$

$$t \approx \left(\frac{4\alpha \mathbf{k}}{\alpha^{2} + \mathbf{k}^{2}} \right)^{2} e^{-2\alpha \mathbf{a}} \approx \frac{e^{-2\alpha \mathbf{a}}}{2 \cosh^{2} \alpha \mathbf{a}} = \frac{1}{1 + \left(\frac{\alpha^{2} + \mathbf{k}^{2}}{2\alpha \mathbf{k}} \right)^{2} \sinh^{2} \alpha \mathbf{a}}$$

 Quest'ultima è alla base dell'approssimazione WKB per la probabilità di tunneling

Caso E > V_0

$$\psi(\mathbf{x} < 0) = \mathbf{A} \mathbf{e}^{i\mathbf{k}\mathbf{x}} + \mathbf{B} \mathbf{e}^{-i\mathbf{k}\mathbf{x}}$$

$$\psi(0 < \mathbf{x} < \mathbf{a}) = \mathbf{C} \mathbf{e}^{i\mathbf{k}'\mathbf{x}} + \mathbf{D} \mathbf{e}^{-i\mathbf{k}'\mathbf{x}}$$

$$\psi(\mathbf{x} > \mathbf{a}) = \mathbf{E} \mathbf{e}^{i\mathbf{k}\mathbf{x}} + \mathbf{F} \mathbf{e}^{-i\mathbf{k}\mathbf{x}}$$

$$B = E \frac{e^{ik'a}}{k'} (k'\cos k'a - ik\sin k'a) - A$$

$$C = E \frac{e^{-ik'a}e^{ika}}{2} \left(\frac{k}{k'} + 1\right)$$

$$D = E \frac{e^{ik'a}e^{ika}}{2} \left(1 - \frac{k}{k'}\right)$$

$$E = 2A \frac{e^{-ika}}{2\cos k'a - i\left(\frac{k^2 + k'^2}{kk'}\right)\sin k'a}$$

$$\mathbf{F} = 0$$

Probabilità di trasmissione

$$t = \frac{|E|^2}{|A|^2} = \frac{1}{1 + \left(\frac{\alpha^2 + k^2}{2\alpha k}\right)^2 \sinh^2 \alpha a} \qquad \alpha = \frac{\sqrt{2m(V - E)}}{\hbar} = ik'$$

$$\sinh x = i\sin x$$

$$\alpha = \frac{\sqrt{2m(V - E)}}{\hbar} = ik^{2}$$

$$sinhix = isinx$$

$$t = \frac{1}{1 - \left(\frac{k^2 - k'^2}{2kk'}\right)^2 \sinh^2 ik'a} = \frac{1}{1 + \left(\frac{k^2 - k'^2}{2kk'}\right)^2 \sin^2 k'a}$$

•
$$k' = 0 \rightarrow t = \frac{1}{1 + \frac{k^2 a^2}{4}}$$

 t = 1 per ogni k'a = πn (n = 1, 2, ...), cioè a = $n\lambda/2$ dove λ = lunghezza d'onda nella barriera

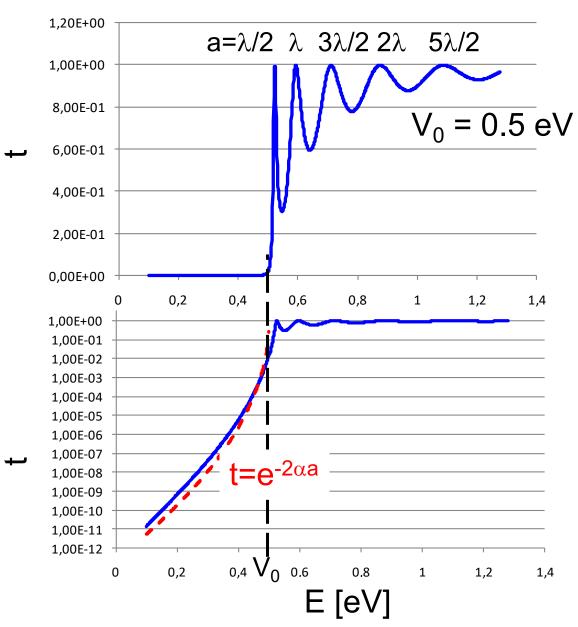
Funzione d'onda

Funzione d'onda su barriera (E=25 meV, V₀=35 meV)

Funzione d'onda su barriera (E=35 meV, V₀=35 meV)

Funzione d'onda su barriera (E=45 meV, V₀=35 meV)

Frazioni trasmesse



D. Ielmini – Elettronica dello Stato Solido 06

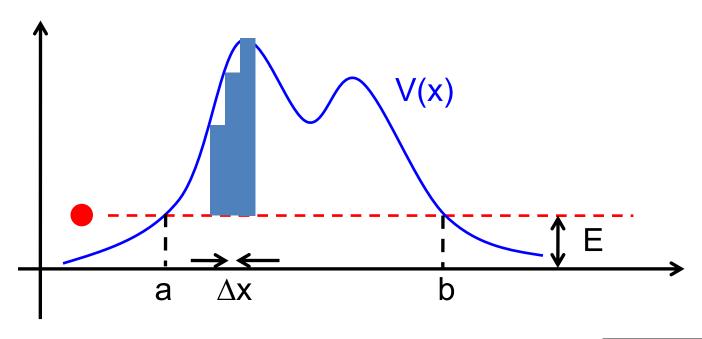
Outline

- La particella libera
- Gradino di potenziale
- Barriera di potenziale
- Tunneling
- Stati non stazionari
- Conclusioni

Tunneling

- L'attraversamento di barriere di potenziale classicamente proibite è un risultato prevedibile solo con la meccanica quantistica
- Esistono diversi casi 'macroscopici' di tunneling:
 - Decadimento alpha in alcuni nuclei
 - Vibrazioni nella molecola di ammoniaca
 - Vari effetti nella fisica dei dispositivi (correnti di gate nei MOSFET, programmazione e perdita di memoria in dispositivi Flash, breakdown Zener in diodi, caratteristiche a resistenza negativa in diodi tunnel)

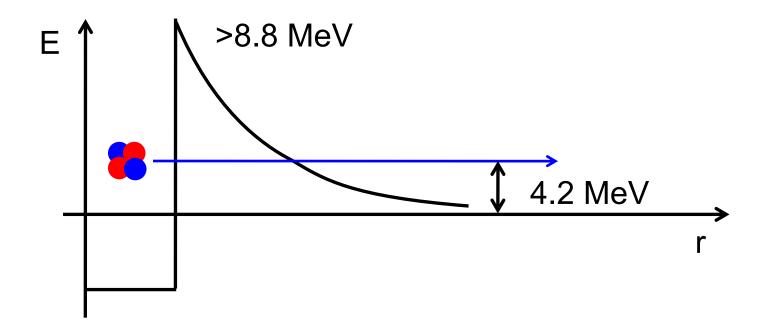
Approssimazione WKB



$$\mathbf{P} = \prod_{\mathbf{n}} \mathbf{e}^{-2\alpha_{\mathbf{n}} \Delta \mathbf{x}} = \mathbf{e}^{-2\sum_{\mathbf{n}} \alpha_{\mathbf{n}} \Delta \mathbf{x}} \rightarrow \mathbf{e}^{-\int_{\mathbf{a}}^{\mathbf{b}} 2\alpha(\mathbf{x}) d\mathbf{x}} = \mathbf{e}^{-\int_{\mathbf{a}}^{\mathbf{b}} 2\frac{\sqrt{2m(V(\mathbf{x}) - E)}}{\hbar} d\mathbf{x}}$$

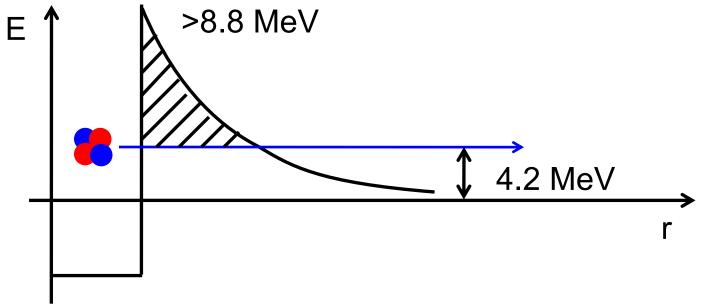
 Applicazioni varie, dalla fisica nucleare ai dispositivi allo stato solido

Decadimento alpha



 Da esperimenti di scattering ad alta energia era noto che l'energia potenziale era almeno 8.8 MeV, mentre l'energia cinetica delle particelle α era 4.2 MeV → paradosso

Stima del tempo di decadimento a



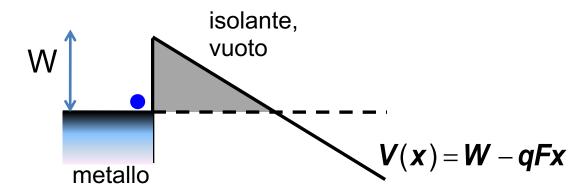
- Tempo medio di tentativo di tunneling $\tau_0 = 2R/v$
- Probabilità di tunneling mediante approssimazione **WKB**

$$\mathbf{P} = \mathbf{e}^{-\int_{R}^{R_{out}} 2\alpha(\mathbf{r}) d\mathbf{r}} = \mathbf{e}^{-\int_{R}^{R_{out}} 2\frac{\sqrt{2m(\mathbf{V}(\mathbf{r}) - \mathbf{E})}}{\hbar} d\mathbf{r}}$$

$$V(r) = \frac{1}{4\pi\varepsilon_0} \frac{2\mathbf{Z}\mathbf{q}^2}{r}, \mathbf{E} = 4.2\mathbf{MeV}$$

Tempo medio di decadimento $\tau = \tau_0/P$ D. lelmini – Elettronica dello Stato Solido 06

Altri esempi



Probabilità di tunneling attraverso la barriera triangolare:

$$\mathbf{P} = \mathbf{e}^{-\int_{\mathbf{a}}^{\mathbf{b}} 2\frac{\sqrt{2m(\mathbf{V}(\mathbf{x}) - \mathbf{E})}}{\hbar} d\mathbf{x}} = \mathbf{e}^{-2\frac{\sqrt{2m}}{\hbar q \mathbf{F}} \int_{0}^{\mathbf{W}} \sqrt{\mathbf{y}} d\mathbf{y}} = \mathbf{e}^{-\frac{4\sqrt{2m}}{3\hbar q \mathbf{F}} \mathbf{W}^{\frac{3}{2}}}$$

- Questa è nota come formula di Fowler-Nordheim
- Applicazioni (con eventuali modifiche): programmazione e cancellazione in memorie Flash, correnti di gate in transistori MOS, corrente di emissione di campo da catodi nel vuoto

Outline

- La particella libera
- Gradino di potenziale
- Barriera di potenziale
- Tunneling
- Stati non stazionari
- Conclusioni

Stati non stazionari

 Una funzione d'onda costruita con una sola autofunzione è <u>stazionaria</u>, cioè la |Ψ(x,t)|² non varia nel tempo. Infatti:

$$\left|\Psi(\boldsymbol{x},\boldsymbol{t})\right|^{2}=\left|\psi(\boldsymbol{x})\mathbf{e}^{-i\omega\boldsymbol{t}}\right|^{2}=\left|\psi(\boldsymbol{x})\right|^{2}$$

 Ma in generale la funzione d'onda non è stazionaria:

$$\Psi(\mathbf{x},t) = \sum_{n} \mathbf{a}_{n} \psi_{n}(\mathbf{x}) e^{-i\frac{\mathbf{E}_{n}}{\hbar}t}$$

 Studiamo la forma e la proprietà di funzioni d'onda non stazionarie

Pacchetto d'onda

 Combinando linearmente funzioni d'onda di particella libera (onde viaggianti) si ottengono pacchetti d'onda

$$\Psi(\mathbf{x},\mathbf{t}) = \int \mathbf{g}(\mathbf{k}) e^{i(\mathbf{k}\mathbf{x} - \omega \mathbf{t})} d\mathbf{k}$$

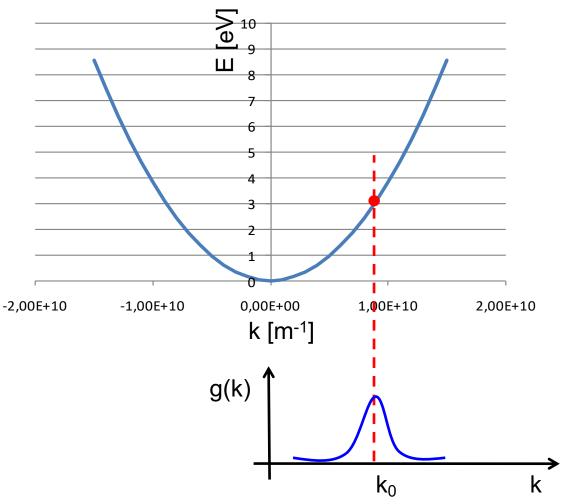
 Partiamo con il pacchetto costruito solo con le parti spaziali

$$f(x) = \int g(k)e^{ikx}dk$$

 Nota: il pacchetto (funzione spaziale) è la trasformata di Fourier della funzione peso g(k)

Costruzione del pacchetto

 Combinazione lineare di stati di particella libera centrati attorno ad uno stato k₀



Peso gaussiano

• Assumiamo per la funzione peso una forma gaussiana $g(k) = e^{-\alpha(k-k_0)^2}$ e sviluppiamo l'integrale:

$$k_0$$

$$f(x) = \int e^{-\alpha(k-k_0)^2} e^{ikx} dk = e^{ik_0x} \int e^{-\alpha(k-k_0)^2} e^{i(k-k_0)x} dk =$$

$$= e^{i\mathbf{k}_0\mathbf{x}} \int e^{-\alpha\mathbf{k}'^2} e^{i\mathbf{k}'\mathbf{x}} d\mathbf{k}' = e^{i\mathbf{k}_0\mathbf{x}} e^{\alpha\left(\frac{i\mathbf{x}}{2\alpha}\right)^2} \int e^{-\alpha\left(\mathbf{k}'^2 - \frac{i\mathbf{x}}{\alpha}\mathbf{k}' + \left(\frac{i\mathbf{x}}{2\alpha}\right)^2\right)} d\mathbf{k}' =$$

$$\mathbf{q} = \mathbf{k'} - \frac{i\mathbf{x}}{2\alpha} \qquad \mathbf{\Rightarrow} \qquad = \mathbf{e}^{i\mathbf{k}_0\mathbf{x}} \mathbf{e}^{\alpha\left(\frac{i\mathbf{x}}{2\alpha}\right)^2} \int \mathbf{e}^{-\alpha\mathbf{q}^2} d\mathbf{q} = \mathbf{e}^{i\mathbf{k}_0\mathbf{x}} \mathbf{e}^{-\frac{\mathbf{x}^2}{4\alpha}} \sqrt{\frac{\pi}{\alpha}}$$

• Nota: $\Delta k \Delta x = (\alpha^{-1} * 4\alpha)^{1/2} = 2 \rightarrow \Delta p \Delta x = 2\hbar$ (principio di indeterminazione)

Pacchetto viaggiante

 Ora consideriamo un pacchetto costruito con onde viaggianti:

$$\Psi(\mathbf{x}, \mathbf{t}) = \int \mathbf{e}^{-\alpha(\mathbf{k} - \mathbf{k}_0)^2} \mathbf{e}^{i(\mathbf{k}\mathbf{x} - \omega \mathbf{t})} d\mathbf{k} =$$

 Dove la pulsazione ω è legata a k da una relazione di dispersione, localmente espressa dallo sviluppo:

$$\omega = \omega_0 + \frac{d\omega}{d\mathbf{k}} \Big|_{\mathbf{k}_0} (\mathbf{k} - \mathbf{k}_0) + \frac{1}{2} \frac{d^2 \omega}{d\mathbf{k}^2} \Big|_{\mathbf{k}_0} (\mathbf{k} - \mathbf{k}_0)^2$$

$$\mathbf{v}_g = \frac{d\omega}{d\mathbf{k}} \Big|_{\mathbf{k}_0} \qquad \beta = \frac{1}{2} \frac{d^2 \omega}{d\mathbf{k}^2} \Big|_{\mathbf{k}_0}$$

Risultato

$$\Psi(\mathbf{x}, \mathbf{t}) = \mathbf{e}^{i(\mathbf{k}_0 \mathbf{x} - \omega_0 \mathbf{t})} \int \mathbf{e}^{-\alpha \mathbf{k}'^2} \mathbf{e}^{i\mathbf{k}' \mathbf{x}} \mathbf{e}^{-i\mathbf{k}' \mathbf{v}_g \mathbf{t}} \mathbf{e}^{-i\beta \mathbf{k}'^2 \mathbf{t}} d\mathbf{k}' =$$

$$\Psi(\mathbf{x}, \mathbf{t}) = \mathbf{e}^{i(\mathbf{k}_0 \mathbf{x} - \omega_0 \mathbf{t})} \int \mathbf{e}^{-(\alpha + i\beta \mathbf{t})\mathbf{k}'^2} \mathbf{e}^{i\mathbf{k}' (\mathbf{x} - \mathbf{v}_g \mathbf{t})} d\mathbf{k}' =$$

Nel caso precedente avevamo:

$$f(x) = e^{ik_0x} \int e^{-\alpha k'^2} e^{ik'x} dk' = e^{ik_0x} e^{-\frac{x^2}{4\alpha}} \sqrt{\frac{\pi}{\alpha}}$$

Quindi ora:

$$\Psi(\mathbf{x}, \mathbf{t}) = \mathbf{e}^{i(\mathbf{k}_0 \mathbf{x} - \omega_0 \mathbf{t})} \int \mathbf{e}^{-(\alpha + i\beta \mathbf{t})\mathbf{k}'^2} \mathbf{e}^{i\mathbf{k}'(\mathbf{x} - \mathbf{v}_g \mathbf{t})} d\mathbf{k}' = \mathbf{e}^{i(\mathbf{k}_0 \mathbf{x} - \omega_0 \mathbf{t})} \mathbf{e}^{-\frac{(\mathbf{x} - \mathbf{v}_g \mathbf{t})^2}{4(\alpha + i\beta \mathbf{t})}} \sqrt{\frac{\pi}{\alpha + i\beta \mathbf{t}}}$$

Modulo quadro

• La grandezza fisicamente interessante è:

$$\left|\Psi(\boldsymbol{x},\boldsymbol{t})\right|^{2} = \mathbf{e}^{-\frac{\alpha(\boldsymbol{x}-\boldsymbol{v_{g}t})^{2}}{2(\alpha^{2}+\beta^{2}\boldsymbol{t}^{2})}} \frac{\pi}{\sqrt{\alpha^{2}+\beta^{2}\boldsymbol{t}^{2}}}$$

- Il pacchetto si sposta con velocità v_g
- Il pacchetto si disperde, la sua varianza aumenta con il tempo secondo $\alpha+\beta^2t^2/\alpha$
- Nel caso della particella libera, v_g = ħk/m
 e β = ħ/2m

Funzioni d'onda

 Pacchetto di onde viaggianti verso x crescenti (E = 30 meV)

 Pacchetto d'onde che incide su un gradino di potenziale (E = 55 meV, V = 45 meV)

 Pacchetto d'onde che incide su una barriera di potenziale (E = 55 meV, V = 60 meV)

Conclusioni

- Analizzati potenziali monodimensionali costanti a tratti (particella libera, gradino di potenziale, barriera di potenziale) non confinati
- Abbiamo riscontrato nuovi effetti puramente quantistici (risonanza nella trasmissione, tunneling)
- Gli stati non stazionari (e.g. il pacchetto d'onde) forniscono una visione più realistica della particella