Elettronica dello Stato Solido Lezione 14: Equazioni del trasporto

Daniele Ielmini

DEIB – Politecnico di Milano

daniele.ielmini@polimi.it

Outline

- Introduzione
- Modello drift diffusion
- Equazioni di continuità
- Equazioni di diffusione dei minoritari
- Generazione ricombinazione
- Conclusioni

Introduzione

- Obiettivo: impostare il problema del trasporto in un dispositivo a semiconduttore, in presenza di:
 - Tensioni, quindi campi elettrici
 - Gradienti di concentrazione
 - Effetti di generazione, ricombinazione, iniezione (non equilibrio)

Stato stazionario

- Corrente di elettroni: $j_n = qn\mu_n F + qD_n \frac{dn}{dx}$
- Corrente di lacune: $j_{p} = qp\mu_{p}F qD_{p}\frac{dp}{dx}$
- Corrente totale a stato stazionario:

$$\boldsymbol{j} = \boldsymbol{j}_n + \boldsymbol{j}_p = \boldsymbol{q} \boldsymbol{n} \mu_n \boldsymbol{F} + \boldsymbol{q} \boldsymbol{D}_n \frac{d\boldsymbol{n}}{d\boldsymbol{x}} + \boldsymbol{q} \boldsymbol{p} \mu_p \boldsymbol{F} - \boldsymbol{q} \boldsymbol{D}_p \frac{d\boldsymbol{p}}{d\boldsymbol{x}}$$

Stato transitorio

- Corrente di spostamento: $\mathbf{j}_{D} = \frac{\partial \mathbf{D}}{\partial t}$
- Non si tratta di corrente di particelle, ma è legata alla variazione della polarizzazione del mezzo → importante nei dielettrici e nella regione svuotata del semiconduttore
- Corrente totale nel transitorio:

$$\boldsymbol{j} = \boldsymbol{j}_n + \boldsymbol{j}_p + \boldsymbol{j}_D$$

Livelli di quasi-Fermi

 Livelli di quasi-Fermi = livelli di energia F_n, F_p che soddisfano le condizioni:

- Nota: il livello di Fermi è a rigore definito solo all'equilibrio, dove i quasi Fermi coincidono con il Fermi $E_F = F_n = F_p$
- In condizioni di fuori equilibrio (fotogenerazione, alti campi, forte iniezione, etc.) il livello di Fermi perde di senso e viene sostituito dal livello di quasi Fermi D. lelmini – Elettronica dello Stato Solido 14

Esempio

- a) Semiconduttore n con n = $N_D = 10^{16}$ cm⁻³, equilibrio (e.g. n_i = 10^{10} cm⁻³ \rightarrow p = 10^4 cm⁻³)
- b) Lo stesso semiconduttore n a seguito di fotogenerazione con n' = p' = 10^{14} cm⁻³
- c) Lo stesso semiconduttore n a seguito di fotogenerazione con n' = p' = 10^{18} cm⁻³

Equazioni di corrente con F_n, F_p

$$\frac{dp}{dx} = \frac{d}{dx}n_i e^{-\frac{F_p - E_i}{kT}} = \frac{n_i}{kT} e^{-\frac{F_p - E_i}{kT}} \left(\frac{dE_i}{dx} - \frac{dF_p}{dx}\right) = \frac{qp}{kT}F - \frac{p}{kT}\frac{dF_p}{dx}$$

$$j_{p} = qp\mu_{p}F - qD_{p}\frac{dp}{dx} = qp\mu_{p}F - qD_{p}\frac{qp}{kT}F + qD_{p}\frac{p}{kT}\frac{dF_{p}}{dx}$$
$$j_{p} = \mu_{p}p\frac{dF_{p}}{dx}$$
$$j_{n} = \mu_{n}n\frac{dF_{n}}{dx}$$

• F_p , F_n da sostituire con E_F in caso di equilibrio

Equazioni di continuità

- Con generazione/ricombinazione: $\frac{\partial \mathbf{p}}{\partial t} = -\frac{1}{\mathbf{q}}\frac{\partial \mathbf{j}_{p}}{\partial \mathbf{x}} + \mathbf{g}_{p} \mathbf{r}_{p}$
- Per gli elettroni:

$$\frac{\partial \boldsymbol{n}}{\partial \boldsymbol{t}} d\boldsymbol{x} = -\frac{1}{\boldsymbol{q}} \boldsymbol{j}_{\boldsymbol{n}}(\boldsymbol{x}) + \frac{1}{\boldsymbol{q}} \boldsymbol{j}_{\boldsymbol{n}}(\boldsymbol{x} + d\boldsymbol{x}) = \frac{1}{\boldsymbol{q}} \frac{\partial \boldsymbol{j}_{\boldsymbol{n}}}{\partial \boldsymbol{x}} d\boldsymbol{x} \quad \Longrightarrow \quad \frac{\partial \boldsymbol{n}}{\partial \boldsymbol{t}} = \frac{1}{\boldsymbol{q}} \frac{\partial \boldsymbol{j}_{\boldsymbol{n}}}{\partial \boldsymbol{x}} + \boldsymbol{g}_{\boldsymbol{n}} - \boldsymbol{r}_{\boldsymbol{n}}$$

Diffusione di minoritari

- Sotto alcune ipotesi aggiuntive, è possibile dare all'equazione di continuità per i minoritari (n_p o p_n) una forma più specifica:
 - F≈0 nella regione di interesse
 - Concentrazioni minoritari all'equilibrio $n_0(x)$ e $p_0(x)$ sono uniformi (indipendenti da x)
 - Iniezione di basso livello: n_p'<<N_A e p_n'<<N_D dove n_p' e p_n' sono le concentrazione di elettroni e lacune minoritari in eccesso rispetto alla concentrazione di equilibrio, e.g. causato da effetti di fotogenerazione

Equazione di diffusione minoritari

- Ipotesi: elettroni minoritari in semiconduttore p
- Trascuriamo la componente di deriva perché n_p piccolo (minoritari) e F≈0 (nota: lo stesso non si può dire per i maggioritari!)

$$\boldsymbol{j}_{\boldsymbol{n}} = \boldsymbol{q}\boldsymbol{n}\boldsymbol{\mu}_{\boldsymbol{n}}\boldsymbol{F} + \boldsymbol{q}\boldsymbol{D}_{\boldsymbol{n}}\,\frac{\partial\boldsymbol{n}}{\partial\boldsymbol{x}} \approx \boldsymbol{q}\boldsymbol{D}_{\boldsymbol{n}}\,\frac{\partial\boldsymbol{n}}{\partial\boldsymbol{x}}$$

- Quindi: $\frac{\partial n}{\partial t} = D_n \frac{\partial^2 n}{\partial x^2} + g_n r_n$
- Inoltre n=n₀+n', con n₀ indipendente da x e t:

$$\frac{\partial \mathbf{n'}}{\partial t} = \mathbf{D}_n \frac{\partial^2 \mathbf{n'}}{\partial \mathbf{x}^2} + \mathbf{g}_n - \mathbf{r}_n \text{ (II legge di Fick)}$$

Equazione di diffusione minoritari

 Infine scriviamo la ricombinazione come r_n=n'/τ_n, con τ_n = tempo di ricombinazione dei minoritari (da giustificare più avanti), quindi:

$$\frac{\partial \mathbf{n'_p}}{\partial t} = \mathbf{D_n} \frac{\partial^2 \mathbf{n'_p}}{\partial \mathbf{x}^2} + \mathbf{g_n} - \frac{\mathbf{n'_p}}{\tau_n}$$

• Idem per le lacune:

$$\frac{\partial \boldsymbol{p'}_n}{\partial \boldsymbol{t}} = \boldsymbol{D}_{\boldsymbol{p}} \frac{\partial^2 \boldsymbol{p'}_n}{\partial \boldsymbol{x}^2} + \boldsymbol{g}_{\boldsymbol{p}} - \frac{\boldsymbol{p'}_n}{\tau_{\boldsymbol{p}}}$$

Esempio 1: stazionario disuniforme n'_{n_G}

- Barretta di semiconduttore p irraggiato su un lato, in modo che n'(0) = n'_G = costante nel tempo. Qual è il profilo stazionario di minoritari?
- $\partial n' / \partial t = 0$ (stazionario)
- g_n = 0 (fotogenerazione solo in superficie)

$$\boldsymbol{D}_{\boldsymbol{n}} \frac{\partial^2 \boldsymbol{n}'}{\partial \boldsymbol{x}^2} = \frac{\boldsymbol{n}'}{\tau_{\boldsymbol{n}}} \qquad \Longrightarrow \qquad \frac{\partial^2 \boldsymbol{n}'}{\partial \boldsymbol{x}^2} = \frac{\boldsymbol{n}'}{\tau_{\boldsymbol{n}} \boldsymbol{D}_{\boldsymbol{n}}} = \frac{\boldsymbol{n}'}{\boldsymbol{L}_{\boldsymbol{n}}^2}$$

Esempio 1: stazionario disuniforme

- $L_n = (D_n \tau_n)^{1/2} = distanza di ricombinazione,$ rappresenta la spazio mediamente percorsodal portatore minoritario prima di ricombinare
- Soluzione: $n'(x) = Ae^{\frac{x}{L_n}} + Be^{-\frac{x}{L_n}}$
- Condizioni al contorno: n'(0) = n_G e n'(∞) = finito, pertanto:

$$\boldsymbol{n}'(\boldsymbol{x}) = \boldsymbol{n}'_{\mathsf{G}} e^{-\overline{L_n}}$$

Esempio 2: transitorio uniforme

222222222222

- Barretta di semiconduttore p irraggiato fino a t=0, caratterizzato da un eccesso uniforme n'_G
- All'istante t=0 la sorgente di generazione viene spenta: qual è l'evoluzione della concentrazione di minoritari?
- $\partial^2 n' / \partial x^2 = 0$ (profilo uniforme)

n'

• $g_n = 0$ (generazione spenta per t>0) $\frac{\partial n'}{\partial t} = -\frac{n'}{\tau_n} \longrightarrow n'(t) = n'_G e^{-\frac{t}{\tau_n}}$ D. lelmini – Elettronica dello Stato Solido 14

Esempio 3: transitorio disuniforme

- Barretta di semiconduttore p irraggiata con un impulso in t = 0, x=0 in modo da creare una delta di minoritari in eccesso, numero totale $N'_{g} = \int_{0}^{+\infty} n'(x,0) dx = \int_{0}^{+\infty} N'_{g} \delta(x) dx =$
- Evoluzione per t>0?
- $g_n = 0$ (generazione spenta per t>0) $\frac{\partial n}{\partial t} = \frac{1}{q} \frac{dj_n}{dx} + g_n - r_n$

Esempio 3: soluzione $\frac{\partial \boldsymbol{n}}{\partial \boldsymbol{t}} = \frac{1}{\boldsymbol{q}} \frac{\boldsymbol{d} \boldsymbol{j}_n}{\boldsymbol{d} \boldsymbol{x}} + \boldsymbol{g}_n - \boldsymbol{r}_n = \frac{1}{\boldsymbol{a}} \frac{\boldsymbol{d}}{\boldsymbol{d} \boldsymbol{x}} \left(\boldsymbol{q} \boldsymbol{D}_n \frac{\partial \boldsymbol{n}}{\partial \boldsymbol{x}} + \boldsymbol{q} \boldsymbol{\mu}_n \boldsymbol{n} \boldsymbol{F} \right) + \boldsymbol{g}_n - \boldsymbol{r}_n$ $= \boldsymbol{D}_{\boldsymbol{n}} \frac{\partial^{2} \boldsymbol{n}}{\partial \boldsymbol{x}^{2}} + \mu_{\boldsymbol{n}} \boldsymbol{F} \frac{\partial \boldsymbol{n}}{\partial \boldsymbol{x}} + \mu_{\boldsymbol{n}} \boldsymbol{n} \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{x}} + \boldsymbol{g}_{\boldsymbol{n}} - \frac{\boldsymbol{n}'}{\tau_{\boldsymbol{n}}}$ $\frac{\partial \boldsymbol{n}'}{\partial \boldsymbol{t}} = \boldsymbol{D}_{\boldsymbol{n}} \frac{\partial^2 \boldsymbol{n}'}{\partial \boldsymbol{x}^2} + \mu_{\boldsymbol{n}} \boldsymbol{F} \frac{\partial \boldsymbol{n}'}{\partial \boldsymbol{x}} - \frac{\boldsymbol{n}'}{\tau}$ • La soluzione è del tipo: $n'(x,t) = n''(x,t)e^{-\frac{t}{\tau_n}}$ • Sostituendo: $\frac{\partial n''}{\partial t}e^{\frac{t}{\tau_n}} - \frac{n'}{\tau_n} = D_n \frac{\partial^2 n''}{\partial x^2}e^{\frac{t}{\tau_n}} + \mu_n F \frac{\partial n''}{\partial x}e^{-\frac{t}{\tau_n}} - \frac{n'}{\tau_n}$

 $\frac{\partial \boldsymbol{n}^{"}}{\partial \boldsymbol{t}} = \boldsymbol{D}_{\boldsymbol{n}} \frac{\partial^{2} \boldsymbol{n}^{"}}{\partial \boldsymbol{x}^{2}} + \mu_{\boldsymbol{n}} \boldsymbol{F} \frac{\partial \boldsymbol{n}^{"}}{\partial \boldsymbol{x}}$

Esempio 3: soluzione

$$\frac{\partial \boldsymbol{n}^{"}}{\partial \boldsymbol{t}} = \boldsymbol{D}_{\boldsymbol{n}} \frac{\partial^2 \boldsymbol{n}^{"}}{\partial \boldsymbol{x}^2} + \mu_{\boldsymbol{n}} \boldsymbol{F} \frac{\partial \boldsymbol{n}^{"}}{\partial \boldsymbol{x}}$$

 La soluzione che si ottiene (metodo della trasformata di Laplace) è:

$$\boldsymbol{n}''(\boldsymbol{x},\boldsymbol{t}) = \frac{\boldsymbol{N'}_{\boldsymbol{G}}}{\sqrt{4\pi\boldsymbol{D}_{\boldsymbol{n}}\boldsymbol{t}}} \boldsymbol{e}^{-\frac{(\boldsymbol{x}+\mu_{\boldsymbol{n}}\boldsymbol{F}\boldsymbol{t})^2}{4\boldsymbol{D}_{\boldsymbol{n}}\boldsymbol{t}}}$$

• E quindi:

$$\boldsymbol{n}'(\boldsymbol{x},\boldsymbol{t}) = \frac{\boldsymbol{N'}_{G} \boldsymbol{e}^{-\frac{\boldsymbol{t}}{\tau_{n}}}}{\sqrt{4\pi \boldsymbol{D}_{n} \boldsymbol{t}}} \boldsymbol{e}^{-\frac{(\boldsymbol{x}+\mu_{n} \boldsymbol{F} \boldsymbol{t})^{2}}{4\boldsymbol{D}_{n} \boldsymbol{t}}}$$

Soluzione per F=0

Soluzione per F applicato

Outline

- Introduzione
- Modello drift diffusion
- Equazioni di continuità
- Equazioni di diffusione dei minoritari
- <u>Generazione ricombinazione</u>
- Conclusioni

Equazioni di continuità

$$\frac{\partial \boldsymbol{p}}{\partial t} = -\frac{1}{\boldsymbol{q}} \frac{\boldsymbol{d} \boldsymbol{j}_{\boldsymbol{p}}}{\boldsymbol{d} \boldsymbol{x}} + \boldsymbol{g}_{\boldsymbol{p}} - \boldsymbol{r}_{\boldsymbol{p}} \qquad \qquad \frac{\partial \boldsymbol{n}}{\partial t} = \frac{1}{\boldsymbol{q}} \frac{\boldsymbol{d} \boldsymbol{j}_{\boldsymbol{n}}}{\boldsymbol{d} \boldsymbol{x}} + \boldsymbol{g}_{\boldsymbol{n}} - \boldsymbol{r}_{\boldsymbol{n}}$$

- Il rate di variazione della concentrazione dall'equazione di continuità include:
 - Divergenza della corrente (drift + diffusione)
 - Tasso di generazione g_n, g_p (generazione termica, fotogenerazione, generazione ad alti campi)
 - Tasso di ricombinazione r_n, r_p (annihilazione elettrone lacuna)
- Quali sono i meccanismi fisici della G R?

Meccanismi di ricombinazione – 1

 $\dot{\mathsf{E}}_{\mathsf{D}}$

a) Banda – banda (radiativo)

b) Centro di ricombinazione
 'deep' (non radiativo)

 c) Accettore/donore
 'shallow' (radiativo – improbabile a temperature non troppo basse, alta ionizzazione)

Meccanismi di ricombinazione – 2

 d) Eccitone (libero o legato a sito donore/accettore, radiativo)

e) Ricombinazione Auger (processo a tre corpi, non radiativo)

Eccitone

 Un elettrone in BC ed una lacuna in BV si legano con interazione coulombiana

Modello dell'idrogeno (come per lo stato donore):
 mg⁴ m^{*}_{ex} / m₀

$$\mathbf{E} = -\frac{\mathbf{mq}}{2(4\pi\varepsilon\hbar)^2} = \frac{\mathbf{m_{ex}} / \mathbf{m_0}}{\varepsilon^2} \mathbf{Ry}$$

dove m^{*}_{ex} = massà ridotta della coppia interagente: $\frac{1}{m_{ex}^*} = \frac{1}{m_{ex}^*} + \frac{1}{m_{h}^*}$

con m*_e, m*_h = masse efficaci di conducibilità

Breve vita media (lifetime = 10⁻⁹ s) prima di ricombinare

Meccanismi di generazione

- a) Banda banda (fotogenerazione, generazione termica)
- b) Centro di generazione 'deep' (fotoemissione, generazione termica)
- c) lonizzazione ad impatto: elettrone 'caldo' rilassa in banda di conduzione generando coppia e-h

Modello di Shockley-Hall-Read

- Nei dispositivi a semiconduttori il processo dominante di ricombinazione è normalmente quello a singolo centro (e.g. deep)
- II modello SHR permette di stimare il rate di G – R dal bilancio di quattro processi elementari:

D. lelmini – Elettronica dello Stato Solido 14

Cattura elettrone

• Il rate di cattura elettrone è dato da:

$$\frac{\partial \boldsymbol{n}}{\partial \boldsymbol{t}}\Big|_{ce} = -\boldsymbol{c}_{\boldsymbol{n}}\boldsymbol{p}_{\boldsymbol{T}}\boldsymbol{n} \qquad [cm^{-3}s^{-1}]$$

dove

- $c_n [cm^3 s^{-1}] = coefficiente di cattura elettroni$
- p_T [cm⁻³] = concentrazione di lacune intrappolate (siti disponibili per l'elettrone)
- n [cm⁻³] = concentrazione elettroni in banda (particelle disponibili alla cattura)
- Nota: il coefficiente di cattura è dato da $c_n = \sigma_n v_{th}$, prodotto della sezione d'urto di cattura (area efficace della trappola ai fini della cattura [cm²]) e velocità termica dell'elettrone [cms⁻¹]

Emissione elettrone

• Il rate di emissione elettrone è dato da:

$$\frac{\partial \boldsymbol{n}}{\partial \boldsymbol{t}}\Big|_{ee} = \boldsymbol{e}_n \boldsymbol{n}_T \boldsymbol{N}_c \qquad [cm^{-3}s^{-1}]$$

dove

- $-e_n [cm^3s^{-1}] = coefficiente di emissione elettroni$
- n_T [cm⁻³] = concentrazione di elettroni
 intrappolati (siti disponibili per la lacuna)
- N_C [cm⁻³] = densità di stati effettiva in banda di conduzione (gli stati sono generalmente quasi tutti disponibili)

Cattura/emissione lacuna

 Analogamente otteniamo il rate di cattura lacuna:

$$\frac{\partial \boldsymbol{p}}{\partial \boldsymbol{t}}\Big|_{ch} = -\boldsymbol{c}_{\boldsymbol{p}}\boldsymbol{n}_{\boldsymbol{\tau}}\boldsymbol{p} \qquad [\text{cm}^{-3}\text{s}^{-1}]$$

dove

- $c_p [cm^3 s^{-1}] = coefficiente di cattura lacune$
- $n_T [cm^{-3}] = concentrazione di elettroni intrappolati$
- p [cm⁻³] = concentrazione lacune in banda
- E quello di emissione:

$$\frac{\partial \boldsymbol{p}}{\partial \boldsymbol{t}}\Big|_{\boldsymbol{e}\boldsymbol{h}} = \boldsymbol{e}_{\boldsymbol{p}}\boldsymbol{p}_{\boldsymbol{T}}\boldsymbol{N}_{\boldsymbol{V}} \qquad [\text{cm}^{-3}\text{s}^{-1}]$$

dove

- $-e_p [cm^3s^{-1}] = coefficiente emissione lacune$
- $p_T [cm^{-3}] = concentrazione lacune intrappolate$
- N_V [cm⁻³] = densità effettiva in banda di valenza
 D. lelmini Elettronica dello Stato Solido 14

Rate complessivi

 Quindi i rate di ricombinazione netti, definiti come il tasso di scomparsa di elettroni dalla banda di conduzione e di lacune dalla banda di valenza, sono:

$$\boldsymbol{r}_{n} = -\frac{\partial \boldsymbol{n}}{\partial t}\Big|_{ce} -\frac{\partial \boldsymbol{n}}{\partial t}\Big|_{ee} = \boldsymbol{c}_{n}\boldsymbol{p}_{T}\boldsymbol{n} - \boldsymbol{e}_{n}\boldsymbol{n}_{T}\boldsymbol{N}_{C} \qquad [\text{cm}^{-3}\text{s}^{-1}]$$
$$\boldsymbol{r}_{p} = -\frac{\partial \boldsymbol{p}}{\partial t}\Big|_{ch} -\frac{\partial \boldsymbol{p}}{\partial t}\Big|_{eh} = \boldsymbol{c}_{p}\boldsymbol{n}_{T}\boldsymbol{p} - \boldsymbol{e}_{p}\boldsymbol{p}_{T}\boldsymbol{N}_{V} \qquad [\text{cm}^{-3}\text{s}^{-1}]$$

 I rate sono positivi se c'è, al netto, ricombinazione – negativi se prevale la generazione
 D. lelmini – Elettronica dello Stato Solido 14

Condizioni di equilibrio

- All'equilibrio (stato del sistema a temperatura costante, non disturbato da forze esterne e.g. campi elettrici e/o magnetici) vale il bilancio dettagliato: ogni processo fondamentale si bilancia perfettamente con il processo opposto, e.g. la cattura e l'emissione di elettroni si devono bilanciare ($r_n = 0$), idem per le lacune ($r_p = 0$)
- È condizione sufficiente (ma non necessaria) per la stazionarietà
- Permette di risalire alla relazione fondamentale che lega i coefficienti di cattura ed emissione

Bilancio dettagliato

• All'equilibrio dunque vale:

$$\mathbf{c}_n \mathbf{p}_T \mathbf{n} = \mathbf{e}_n \mathbf{n}_T \mathbf{N}_C \rightarrow \mathbf{e}_n = \frac{\mathbf{p}_T \mathbf{n}}{\mathbf{n}_T \mathbf{N}_C} \mathbf{c}_n = \alpha_1 \mathbf{c}_n$$

$$\mathbf{c}_{p}\mathbf{n}_{T}\mathbf{p} = \mathbf{e}_{p}\mathbf{p}_{T}\mathbf{N}_{V} \rightarrow \mathbf{e}_{p} = \frac{\mathbf{n}_{T}\mathbf{p}}{\mathbf{p}_{T}\mathbf{N}_{V}}\mathbf{c}_{p} = \beta_{1}\mathbf{c}_{p}$$

- Nota: stiamo assumendo che i coefficienti di cattura/emissione rimangano uguali al valore osservato all'equilibrio
- I tassi di ricombinazione allora diventano:

$$\boldsymbol{r}_{\boldsymbol{n}} = \boldsymbol{c}_{\boldsymbol{n}} \left(\boldsymbol{p}_{T} \boldsymbol{n} - \alpha_{1} \boldsymbol{N}_{C} \boldsymbol{n}_{T} \right)$$
$$\boldsymbol{r}_{\boldsymbol{p}} = \boldsymbol{c}_{\boldsymbol{p}} \left(\boldsymbol{n}_{T} \boldsymbol{p} - \beta_{1} \boldsymbol{N}_{V} \boldsymbol{p}_{T} \right)$$

Proporzionalità cattura-emissione

• I coefficienti di proporzionalità sono:

$$\alpha_{1} = \frac{\boldsymbol{p}_{T}\boldsymbol{n}}{\boldsymbol{n}_{T}\boldsymbol{N}_{c}} = \frac{(\boldsymbol{N}_{T} - \boldsymbol{n}_{T})}{\boldsymbol{n}_{T}} \frac{\boldsymbol{n}}{\boldsymbol{N}_{c}} = \left(\frac{\boldsymbol{N}_{T}}{\boldsymbol{n}_{T}} - 1\right) \frac{\boldsymbol{n}}{\boldsymbol{N}_{c}}$$
$$\beta_{1} = \frac{\boldsymbol{n}_{T}\boldsymbol{p}}{\boldsymbol{p}_{T}\boldsymbol{N}_{V}} = \frac{\boldsymbol{n}_{T}}{\boldsymbol{N}_{T} - \boldsymbol{n}_{T}} \frac{\boldsymbol{p}}{\boldsymbol{N}_{V}} = \frac{1}{\left(\frac{\boldsymbol{N}_{T}}{\boldsymbol{n}_{T}} - 1\right)} \frac{\boldsymbol{p}}{\boldsymbol{N}_{V}}$$

Ricordiamo che:

$$\frac{\boldsymbol{n}_{T}}{\boldsymbol{N}_{T}} = \frac{1}{\mathbf{e}^{\frac{\boldsymbol{E}_{T} - \boldsymbol{E}_{F}}{\boldsymbol{k}T}} + 1}$$

$$n = N_{c} e^{-\frac{E_{c}-E_{F}}{kT}}$$
$$p = N_{v} e^{\frac{E_{v}-E_{F}}{kT}}$$

Proporzionalità e intepretazione

• Quindi: $\alpha_1 = \left(\mathbf{e}^{\frac{\mathbf{E}_T - \mathbf{E}_F}{\mathbf{k}T}} + 1 - 1\right)\mathbf{e}^{-\frac{\mathbf{E}_c - \mathbf{E}_F}{\mathbf{k}T}} = \mathbf{e}^{-\frac{\mathbf{E}_c - \mathbf{E}_T}{\mathbf{k}T}}$

$$\beta_{1} = \frac{1}{\left(e^{\frac{E_{T}-E_{F}}{kT}}+1-1\right)}e^{\frac{E_{V}-E_{F}}{kT}} = e^{\frac{E_{V}-E_{T}}{kT}}$$
• Le relazioni:
$$e_{n} = e^{-\frac{E_{C}-E_{T}}{kT}}c_{n}$$

$$E_{C} - C = E_{T}$$

$$E_{V} - C = E_{T}$$

indicano che il coefficiente di emissione è uguale a quello di cattura moltiplicato per la probabilità di eccitazione termica dal livello di trappola E_T a quello di banda, E_C per elettroni e E_V per lacune, indipendente da E_F

Stato stazionario

- È definito come quello stato in cui tutte le grandezze (e.g. temperature, campi, concentrazioni di portatori liberi e intrappolati) sono invarianti nel tempo
- Differisce dallo stato di equilibrio (i.e. non vale il bilancio dettagliato), che è un particolare stato stazionario
- Lo stato (quasi) stazionario è generalmente invocato per la soluzione dei problemi di dispositivi a semiconduttore

Ricombinazione in stato stazionario

 La concentrazione di elettroni intrappolati non può variare nel tempo, quindi:

• Essendo $p_T = N_T - n_T$:

$$\boldsymbol{c}_{\boldsymbol{n}}\left(\boldsymbol{N}_{\boldsymbol{\tau}}\boldsymbol{n}-\boldsymbol{n}_{\boldsymbol{\tau}}\boldsymbol{n}-\boldsymbol{\alpha}_{1}\boldsymbol{N}_{\boldsymbol{c}}\boldsymbol{n}_{\boldsymbol{\tau}}\right)=\boldsymbol{c}_{\boldsymbol{\rho}}\left(\boldsymbol{n}_{\boldsymbol{\tau}}\boldsymbol{\rho}-\beta_{1}\boldsymbol{N}_{\boldsymbol{v}}\boldsymbol{N}_{\boldsymbol{\tau}}+\beta_{1}\boldsymbol{N}_{\boldsymbol{v}}\boldsymbol{n}_{\boldsymbol{\tau}}\right)$$

• Esplicitando n_T: $n_{\tau} = N_{\tau} \frac{c_n n + c_p \beta_1 N_V}{c_p p + c_p \beta_1 N_V + c_n n + c_n \alpha_1 N_C}$

Ricombinazione in stato stazionario

- Definiamo n₁ e p₁ come: $n_1 = \alpha_1 N_c = N_c e^{-\frac{E_c - E_T}{kT}}$ $p_1 = \beta_1 N_V = N_V e^{\frac{E_V - E_T}{kT}}$
- Cioè n₁ e p₁ sarebbero le concentrazioni di elettroni e lacune se E_F coincidesse con E_T. Otteniamo la formula semplificata:

$$\boldsymbol{n}_{\tau} = \boldsymbol{N}_{\tau} \frac{\boldsymbol{c}_{n}\boldsymbol{n} + \boldsymbol{c}_{p}\boldsymbol{p}_{1}}{\boldsymbol{c}_{p}\boldsymbol{p} + \boldsymbol{c}_{p}\boldsymbol{p}_{1} + \boldsymbol{c}_{n}\boldsymbol{n} + \boldsymbol{c}_{n}\boldsymbol{n}_{1}}$$

• Che sostituiamo in r_n (= r_p) definito come R:

$$\boldsymbol{R} = \boldsymbol{r}_n = \boldsymbol{c}_n \left((\boldsymbol{N}_T - \boldsymbol{n}_T) \boldsymbol{n} - \boldsymbol{n}_1 \boldsymbol{n}_T \right) = \dots$$

Formula di SHR

- Dopo alcuni passaggi si ottiene: $R = \frac{np - n_i^2}{\frac{n + n_1}{c_n N_T} + \frac{p + p_1}{c_n N_T}}$
- Possiamo ora definire i tempi di ricombinazione dei minoritari:
- Per ottenere infine:

$$\boldsymbol{R} = \frac{\boldsymbol{n}\boldsymbol{p} - \boldsymbol{n}_i^2}{\tau_{\boldsymbol{p}} \left(\boldsymbol{n} + \boldsymbol{n}_1\right) + \tau_{\boldsymbol{n}} \left(\boldsymbol{p} + \boldsymbol{p}_1\right)}$$

 $\tau_n = \frac{1}{\boldsymbol{c}_n \boldsymbol{N}_{\tau}}$

 $\tau_{p} = \frac{1}{\boldsymbol{c}_{p} \boldsymbol{N}_{\tau}}$

• Significato:

 $-np > n_i^2 \rightarrow R>0$ (prevale la ricombinazione)

 $-np < n_i^2 \rightarrow R<0$ (prevale la generazione)

D. lelmini – Elettronica dello Stato Solido 14

[S]

[S]

Limite di bassa iniezione

- La formula di SHR dà il tasso di G R in caso di non-equilibrio (np ≠ n_i²), questo può essere dovuto a fotogenerazione (irraggiamento laser) o iniezione di portatori indotta dal campo (e.g. nei pressi della zona svuotata in un diodo, oppure nella base di un transistore bipolare), etc.
- La condizione di bassa iniezione è una sorta di leggero non-equilibrio dove l'eccesso di portatori è trascurabile rispetto alla concentrazione di maggioritari:
 - -n', p' << n_0 in semiconduttore n
 - -n', p' >> p₀ in semiconduttore p

SHR – bassa iniezione

• Ipotizzando anche che E_T sia sufficientemente prossimo al livello intrinseco in modo che $n_1 \approx p_1 \approx n_i$, la formula di SHR in condizione di bassa iniezione diventa:

$$\mathbf{R} \approx \frac{(\mathbf{n}_0 + \mathbf{n}')(\mathbf{p}_0 + \mathbf{p}') - \mathbf{n}_i^2}{\tau_p \left(\mathbf{n}_0 + \mathbf{n}' + \mathbf{n}_i\right) + \tau_n \left(\mathbf{p}_0 + \mathbf{p}' + \mathbf{p}_i\right)} = \frac{\mathbf{n}_0 \mathbf{p}_0 + \mathbf{n}' \mathbf{p}_0 + \mathbf{n}_0 \mathbf{p}' + \mathbf{n}' \mathbf{p}' - \mathbf{n}_i^2}{\tau_p \left(\mathbf{n}_0 + \mathbf{n}' + \mathbf{n}_i\right) + \tau_n \left(\mathbf{p}_0 + \mathbf{p}' + \mathbf{p}_i\right)}$$

• Assumiamo che si tratti di semiconduttore n:

$$\boldsymbol{R} \approx \frac{\boldsymbol{n}'\boldsymbol{p}_{0} + \boldsymbol{n}_{0}\boldsymbol{p}'}{\tau_{\boldsymbol{p}}\left(\boldsymbol{n}_{0} + \boldsymbol{n}' + \boldsymbol{p}'_{i}\right) + \tau_{\boldsymbol{n}}\left(\boldsymbol{p}_{0} + \boldsymbol{p}' + \boldsymbol{p}_{i}\right)} \approx \frac{\boldsymbol{n}_{0}\boldsymbol{p}'}{\tau_{\boldsymbol{p}}\boldsymbol{n}_{0}} \approx \frac{\boldsymbol{p}'}{\tau_{\boldsymbol{p}}}$$
• Per semiconductore p:
$$\boldsymbol{R} \approx \frac{\boldsymbol{n}'}{\tau_{\boldsymbol{p}}}$$

Nota

- La formula di ricombinazione semplificata (e.g. $r_n = n'/\tau_n$ per semiconduttore p) è quella utilizzata nell'equazione di diffusione dei minoritari
- La cinetica è del primo ordine (R ∝ n') perché il processo è ad un corpo (sequenza alternata di catture elettrone e lacuna)
- Nel caso di ricombinazione banda-banda, la cinetica è del secondo ordine R \propto n'p' (meccanismo a due corpi elettrone lacuna)
- Nel caso di ricombinazione Auger la cinetica è del terz'ordine R \propto n'²p' (meccanismo a tre corpi elettrone-lacuna-elettrone)

Conclusioni

- Le formule analitiche per i flussi di drift e diffusione permettono di ricavare equazioni descrittive del bilancio di portatori nei semiconduttori (equazione di continuità, equazione di diffusione minoritari)
- Modello di SHR permette di dare semplice forma analitica al tasso di ricombinazione