Optoelettronica 27.7.2021

Esercizio 1:

Un sistema di comunicazione ottico utilizza una fibra ottica step-index con apertura numerica NA pari a 0.2044 e con indice di rifrazione del core n_1 = 1.4. La fibra viene utilizzata in seconda finestra (λ = 1310 nm).

- a) Calcolare, motivando i passaggi, l'angolo di accettazione in aria.
- b) Considerando la sola dispersione intermodale, valutare la massima frequenza di funzionamento per un sistema *Non-Return-to-Zero* (NRZ) con fibra lunga 10 km.
- c) Determinare il raggio massimo del core per avere fibra single-mode.

Esercizio 2:

Si consideri un diodo laser *edge-emitting* a doppia eterostruttura in GaAs (indice di rifrazione n = 3.6) che opera in regime stazionario alla lunghezza d'onda λ_0 = 870 nm. Il laser ha le seguenti caratteristiche: lunghezza della cavità L = 310 μ m, larghezza del contatto superiore W = 4 μ m, spessore del layer attivo d = 90 nm, tempo di vita dei fotoni in cavità τ_{ph} = 2.3 ps, tempo di emissione spontanea τ_r = 2.5 ns, concentrazione di elettroni liberi a soglia n_{TH} = 1.9 · 10¹⁸ cm⁻³. La cavità sfrutta le riflessioni alle interfacce semiconduttore-aria.

- a) Calcolare le perdite interne α_s .
- b) Determinare la corrente di soglia ITH.
- c) Calcolare la *slope-efficiency* η_s e la potenza d'uscita P $_0$ quando la corrente di polarizzazione è I = 50 mA.

Esercizio 3:

Si consideri una cella solare di area $A = 1 \text{ cm}^2$ connessa ad un carico di resistenza $R = 20 \Omega$. La cella in esame, su cui incide una radiazione di intensità pari a 1 kW/m², è caratterizzata da una corrente di buio $I_0 = 60 \text{ pA}$ e da una corrente di corto circuito $|I_{sc}| = 32.5 \text{ mA}$.

- a) Calcolare la tensione Voc che si sviluppa a circuito aperto ai capi della cella.
- b) Determinare il punto di lavoro del circuito.

densità di stati effettiva in banda di valenza N_V [cm⁻³]

c) Valutare l'efficienza di conversione η della cella.

Domande di teoria:

- a) Spiegare la relazione tra colore del LED e caratteristiche fisiche del semiconduttore nella regione attiva.
- b) Definire la responsività R del fotodiodo e tracciare l'andamento qualitativo di R per un fotodiodo p-n ed un fotodiodo pin, giustificandone il differente andamento per i due diodi.

1.04 x 10¹⁹

Costanti fisiche:

massa dell'elettrone $m_0 = 9.109 \cdot 10^{-31} \text{ kg}$ costante di Planck $h = 6.626 \cdot 10^{-34} \text{ J s}$ $e = 1.602 \cdot 10^{-19} C$ carica elettronica $k_B = 1.381 \cdot 10^{-23} \text{ J K}^{-1}$ costante di Boltzmann velocità della luce $c = 2.998 \cdot 10^8 \text{ m s}^{-1}$ costante dielettrica nel vuoto $\varepsilon_0 = 8.85419 \cdot 10^{-12} \text{ F m}^{-1}$ Si costante dielettrica relativa ε_r 11.7 velocità di saturazione v_{sat} [cm s⁻¹] 10^{7} 1.45×10^{10} concentrazione intrinseca ni [cm-3] gap di energia E_G [eV] 1.12 2.8×10^{19} densità di stati effettiva in banda di conduzione Nc [cm-3]

Optoelectronics 27.7.2021

Exercise 1:

An optical communication system uses a step-index optical fiber with numerical aperture NA = 0.0244. The core of the fiber has a refraction index n_1 = 1.4. The system is operating at λ = 1310 nm.

- a) Calculate, motivating the steps, the acceptance angle in air.
- b) Considering only the modal dispersion, evaluate the maximum operating frequency for a *Non-Return-to-Zero* (NRZ) system with 10 km long fiber.
- c) Determine the maximum core radius for having a single-mode fiber.

Exercise 2:

Consider a GaAs double heterostructure edge-emitting laser diode (refractive index n = 3.6) operating in CW at λ_0 = 870 nm. The laser has the following properties: cavity length L = 310 μ m, top electrode width W = 4 μ m, active layer thickness d = 90 nm, photon cavity lifetime τ_{ph} = 2.3 ps, spontaneous decay time constant τ_r = 2.5 ns, threshold electron concentration n_{TH} = 1.9 \cdot 10¹⁸ cm⁻³. The cavity uses the reflections at the semiconductor-air interfaces.

- a) Calculate the internal losses α_s .
- b) Determine the threshold current I_{TH}.
- c) Calculate the slope-efficiency η_s and the output power P₀ when the bias current is I = 50 mA.

Exercise 3:

A solar cell with area A = 1 cm² drives a resistance load R = 20 Ω . This cell, illuminated with light of intensity 1 kW/m², has dark current I₀ = 60 pA and short circuit current |I_{sc}| = 32.5 mA.

- a) Calculate the open circuit output voltage Voc.
- b) Determine the operating point of the circuit.
- Evaluate the efficiency η of the solar cell in this circuit.

Theory questions:

- a) Explain the relationship between LED color and physical characteristics of the semiconductor in the active region.
- b) Define the responsivity R of the photodiode and trace the qualitative trend of R for a p-n photodiode and a pin photodiode, justifying the different trend for the two diodes.

 $m_0 = 9.109 \cdot 10^{-31} \text{ kg}$

Physical constants:

electron rest mass

 $h = 6.626 \cdot 10^{-34} \text{ J s}$ Planck constant $e = 1.602 \cdot 10^{-19} C$ electron charge $k_B = 1.381 \cdot 10^{-23} \text{ J K}^{-1}$ Boltzmann constant $c = 2.998 \cdot 10^8 \text{ m s}^{-1}$ speed of light $\varepsilon_0 = 8.85419 \cdot 10^{-12} \text{ F m}^{-1}$ vacuum permittivity 11.7 relative permittivity ε_r saturation electric field [kV cm-1] 20 10^{7} saturation velocity [cm s⁻¹] 1.45 x 10¹⁰ intrinsic concentration n_i [cm⁻³] energy gap E_G [eV] 1.12 effective density of states in the conduction band N_C [cm⁻³] 2.8×10^{19} 1.04 x 10¹⁹ effective density of states in the valence band N_V [cm⁻³]