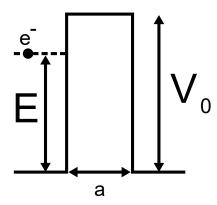

Esercitazione 4 (22/03/2022)

Esercizio 1

Calcolare in che condizioni l'operatore Hamiltoniano (energia cinetica e potenziale) e l'operatore del momento (quantità di moto) commutano.


Esercizio 2

Si consideri il profilo di potenziale in figura. Trascurando i fenomeni di riflessione e sapendo che $\Delta E = 2 \ eV$, $\lambda_1 = 3\lambda_3$, calcolare l'energia dell'elettrone viaggiante da sinistra verso destra.

Esercizio 3

Si consideri una barriera di potenziale larga 2 nm e alta $V_0=3\ eV$ e un elettrone viaggiante da sinistra a destra con energia $E=2.5\ eV$ e flusso incidente $J_i=10^{20}\ cm^{-2}s^{-1}$.

- Quanto vale il flusso trasmesso utilizzando l'approssimazione WKB?
- È applicabile e corretta l'approssimazione?
- A quanto corrisponde l'errore commesso sulla valutazione dello spessore della barriera?
- Per quali valori di energia si ottiene trasmissibilità $|T|^2 = 1$?

Esercizio 4

Si consideri una barriera di potenziale alta $W_1=4.1\ eV$ e larga $a=6\ nm$, e un elettrone viaggiante da sinistra verso destra con energia $E=1\ eV$ e massa efficace $m_e^*=0.33\ m_e$. Calcolare la probabilità di tunneling quando ai capi della barriera è applicato:

- Un potenziale $V_A=0\ V$
- Un potenziale $V_A = 2 V$
- Un potenziale $V_A = 12 V$