Optoelettronica 08.9.2022

Esercizio 1:

Si consideri un laser a gas He-Ne ($m_{He} = 0.66 \times 10^{-26}$ Kg, $m_{Ne} = 3.35 \times 10^{-26}$ Kg) che opera alla lunghezza d'onda caratteristica $\lambda_0 = 632.8$ nm. Il laser è realizzato mediante un tubo in vetro delimitato da due specchi di riflettività $R_1 = 1$ e $R_2 = 0.97$ ed è caratterizzato da allargamento di riga Doppler $\Delta v_{1/2} = 1.65$ GHz, numero di modi di emissione M = 5 e tempo di vita dei fotoni in cavità $\tau_{ph} = 40$ ns.

- a) Determinare la temperatura di funzionamento del laser.
- b) Calcolare la lunghezza L del tubo.
- c) Stimare le perdite interne della cavità.

Esercizio 2:

Un LED in AlGaAs opera a temperatura ambiente con picco di emissione a λ_0 = 800 nm. Il LED presenta le seguenti caratteristiche:

- Potenza di uscita P₀ = 8 mW quando opera a I_F = 17 mA
- efficienza di conversione elettro-ottica $\eta_{PCE} = 5 \%$.
- a) Determinare l'energy-gap del layer attivo in AlGaAs.
- b) Determinare la larghezza FWHM Δλ_{1/2} dello spettro di emissione.
- c) Calcolare l'efficienza quantica esterna η_{EQE} del LED e la tensione diretta V_F applicata ai capi del dispositivo.

Esercizio 3:

Si consideri un rivelatore APD in silicio la cui struttura prevede uno strato superficiale trattato antiriflesso di tipo n⁺ di spessore $W_{n+} = 2 \mu m$, una regione di valanga drogata p ($N_{A,av} = 10^{16} \text{ cm}^{-3}$) di spessore $W_{p,av} = 1 \mu m$, una zona quasi intrinseca π ($N_{A,\pi} = 10^{14} \text{ cm}^{-3}$) di spessore $W_{\pi} = 20 \mu m$ e un substrato p⁺. Il fotodiodo, su cui incide un segnale ottico, è caratterizzato inoltre da un guadagno di moltiplicazione M=100 e da un rapporto tra i coefficienti di ionizzazione di lacune ed elettroni k = 0.1.

- a) Determinare la polarizzazione inversa applicata ai capi del rivelatore sapendo che il campo elettrico all'interfaccia tra la zona di valanga e quella quasi intrinseca E_{π} = 60 kV/cm.
- b) Calcolare la frazione di potenza ottica incidente sul dispositivo assorbita rispettivamente nella zona p di valanga e nella zona π assumendo un coefficiente di assorbimento $\alpha = 0.1 \ \mu m^{-1}$.
- c) Fornire una stima del tempo di risposta del fotodiodo a valanga specificando il significato di ciascun contributo.

Domande di teoria:

- a) Illustrare l'amplificatore in fibra drogata Erbio (Erbium-doped fiber amplifier, EDFA), dal meccanismo fisico base all'implementazione hardware.
- Illustrare la struttura ed il funzionamento del LED a quantum well, spiegando i principali vantaggi rispetto al LED ad eterogiunzione.

Costanti fisiche:

massa dell'elettrone $m_0 = 9.109 \cdot 10^{-31} \, kg$ costante di Planck $h = 6.626 \cdot 10^{-34} \, J \, s$ carica elettronica $e = 1.602 \cdot 10^{-19} \, C$ costante di Boltzmann $k_B = 1.381 \cdot 10^{-23} \, J \, K^{-1}$ velocità della luce $c = 2.998 \cdot 10^8 \, m \, s^{-1}$ costante dielettrica nel vuoto $\epsilon_0 = 8.85419 \cdot 10^{-12} \, F \, m^{-1}$

Optoelectronics 08.9.2022

Consider a He-Ne gas laser ($m_{He} = 0.66 \times 10^{-26}$ Kg, $m_{Ne} = 3.35 \times 10^{-26}$ Kg) operating at wavelength $\lambda_0 = 632.8$ nm. It consists of a narrow glass tube with two end mirrors of reflectivity $R_1 = 1$ and $R_2 = 0.97$, respectively, and is characterized by Doppler broadened linewidth $\Delta v_{1/2} = 1.65$ GHz, M = 5 modes and photon cavity lifetime $\tau_{ph} = 40$ ns.

- a) Determine the operating temperature of the laser.
- b) Calculate the laser tube length.
- c) Evaluate the internal loss coefficient of the cavity.

Exercise 2:

Consider an AlGaAs LED operating at room temperature with emission wavelength λ_0 = 800 nm. The LED has the following characteristics:

- Output power P₀ = 8 mW when is biased with a forward current I_F = 17 mA,
- Conversion efficiency $\eta_{PCE} = 5 \%$.
- a) Calculate the energy-gap of the active material.
- b) Determine the spectral linewidth FWHM $\Delta\lambda_{1/2}$.
- c) Calculate the external quantum efficiency neoe and the direct voltage V_F applied across the device.

Exercise 3:

Consider a silicon APD structure with a AR coated n⁺-doped surface layer of thickness $W_{n+} = 2 \mu m$, a p-doped ($N_{A,p} = 10^{16} \text{ cm}^{-3}$) avalanche layer of thickness $W_{p,av} = 1 \mu m$, a light-doped ($N_{A,\pi} = 10^{14} \text{ cm}^{-3}$) π -layer of thickness $W_{\pi} = 20 \mu m$ and a p⁺ substrate. In addition, the detector, on which an optical signal impinges, has multiplication gain M = 100 and hole/electron ionization coefficient ratio k = 0.1.

- a) Determine the reverse bias applied to the detector knowing that the electric field at the interface between the avalanche and π layer E_{π} = 60 kV/cm.
- b) Calculate the percentage of incident optical power absorbed in the avalanche and π layer respectively assuming an absorption coefficient $\alpha = 0.1 \ \mu m^{-1}$.
- c) Give an estimate of the APD response time specifying each term.

Theory questions:

- a) Illustrate the Erbium-doped fiber amplifier (EDFA), from the fundamental physical mechanism to the hardware implementation.
- b) Illustrate the quantum-well LED structure and operation, explaining the main advantages with respect to the heterojunction LED.

Physical constants:

$m_0 = 9.109 \cdot 10^{-31} \text{ kg}$
$h = 6.626 \cdot 10^{-34} \text{ J s}$
e = 1.602·10 ⁻¹⁹ C
$k_B = 1.381 \cdot 10^{-23} \text{ J K}^{-1}$
$c = 2.998 \cdot 10^8 \text{ m s}^{-1}$
$\varepsilon_0 = 8.85419 \cdot 10^{-12} \text{ F m}^{-1}$
Si
11.7
20
10 ⁷
1.45 x 10 ¹⁰