Exercise Class 1

Exercise 1

Calculate all possible values of the angular momentum L, of its projection on the z-axis L_{z}, and of the magnetic dipole momentum along $z \mu_{z}$ of an electron when $I=2$, and plot them graphically.

Exercise 2

Consider a qubit $|\psi\rangle=\left(\frac{1}{2}+\frac{i}{2}\right)|0\rangle-\left(\frac{1}{2 \sqrt{2}}+i \frac{\sqrt{3}}{2 \sqrt{2}}\right)|1\rangle$.
a. Locate the state on the Bloch sphere by calculating the corresponding angles θ, ϕ.
b. Calculate the global rotation angle δ and the equivalent state $\left|\psi^{\prime}\right\rangle$ with purely real α^{\prime} coefficient.

Exercise 3

Consider the Stern-Gerlach experimental setup in Fig. 1, where the input qubit is prepared in state $|\psi\rangle=$ $\frac{1}{\sqrt{2}}|0\rangle-\left(\frac{1+\sqrt{3}}{4}-i \frac{1-\sqrt{3}}{4}\right)|1\rangle$. Calculate the measurement probability for states $\left|x_{+}\right\rangle,\left|x_{-}\right\rangle$and $\left|y_{+}\right\rangle,\left|y_{-}\right\rangle$ after the corresponding experimental setups. Suppose then to collimate the $\left|x_{+}\right\rangle,\left|x_{-}\right\rangle$output beams. Calculate the measurement probability for $\left|y_{+}\right\rangle,\left|y_{-}\right\rangle$after the second $S G$ setup.

Exercise 4

Derive the Pauli operator for direction \vec{n} described by $\theta=\frac{\pi}{2}, \phi=\frac{\pi}{4}$, calculate its corresponding eigenvectors and eigenvalues, and plot them on the Bloch sphere.

