Exercise Class 2

Exercise 1

Consider a state $|\psi\rangle$. Knowing that $\quad P_{0}(|\psi\rangle)=0.933, P_{1}(|\psi\rangle)=0.067, P_{0}(H|\psi\rangle)=0.625$, $P_{1}(H|\psi\rangle)=0.375, P_{0}\left(H S^{\dagger}|\psi\rangle\right)=0.7165, P_{1}\left(H S^{\dagger}|\psi\rangle\right)=0.2835$, estimate the angles θ, ϕ localizing the state on the Bloch sphere.

Exercise 2

Consider the truth table:

Calculate the operator \hat{O} such that $\left|\psi_{\text {out }}\right\rangle=\hat{O}\left|\psi_{\text {in }}\right\rangle$.

Exercise 3

Consider a two-qubit system with state $|\psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$. Determine whether the state is a product state or entangled state.

Exercise 4

Consider the two-qubit circuit in Fig. 1, where input qubits $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$ are prepared in the $|0\rangle$ and $|1\rangle$ state respectively. Determine the output state $\left|\psi_{o}\right\rangle$ of the circuit.

Exercise 5

Consider the two-qubit circuit in Fig. 1. Determine the truth table and the corresponding equivalent operator \widehat{O}.

