Exercise Class 4

Exercise 1

Consider a state $|\psi\rangle$. Knowing that $\quad P_{0}(|\psi\rangle)=0.8, P_{1}(|\psi\rangle)=0.3, P_{0}(H|\psi\rangle)=0.6$, $P_{1}(H|\psi\rangle)=0.4, P_{0}\left(H S^{\dagger}|\psi\rangle\right)=0.7, P_{1}\left(H S^{\dagger}|\psi\rangle\right)=0.3$, estimate the angles θ, ϕ localizing the state on the Bloch sphere.

Exercise 2

Derive the pulse schedule to operate $\widehat{O}=\widehat{X} \widehat{H}$ for a spin-qubit quantum computing system equipped with the following primitives:

- $\quad R_{z}(\theta)$ by free Larmor precession induced by a static field $B_{z}=0.5 T$
- $\quad R_{x}(\theta)$ by ESR induced by a resonant oscillating field $B_{x}=2.7 m T$ with constant phase

Exercise 3

Consider the operator in Exercise 2. Derive the pulse schedule to operate \hat{O} in a spin-qubit quantum computing system equipped with:

- Calibrated $R_{x}\left(\frac{\pi}{2}\right)$ pulses realized by ESR with $\Omega=18.896 \mathrm{MHz}, \omega=7 \mathrm{GHz}$
- Virtual-Z gates with arbitrary phase angle θ

