Exercise Class 4

Exercise 1

Consider a state $|\psi\rangle$. Knowing that $P_0(|\psi\rangle) = 0.8$, $P_1(|\psi\rangle) = 0.3$, $P_0(H|\psi\rangle) = 0.6$, $P_1(H|\psi\rangle) = 0.4$, $P_0(HS^{\dagger}|\psi\rangle) = 0.7$, $P_1(HS^{\dagger}|\psi\rangle) = 0.3$, estimate the angles θ , ϕ localizing the state on the Bloch sphere.

Exercise 2

Derive the pulse schedule to operate $\hat{O} = \hat{X}\hat{H}$ for a spin-qubit quantum computing system equipped with the following primitives:

- $R_z(\theta)$ by free Larmor precession induced by a static field $B_z = 0.5 T$
- $R_{\chi}(\theta)$ by ESR induced by a resonant oscillating field $B_{\chi} = 2.7 mT$ with constant phase

Exercise 3

Consider the operator in Exercise 2. Derive the pulse schedule to operate \hat{O} in a spin-qubit quantum computing system equipped with:

- Calibrated $R_x\left(\frac{\pi}{2}\right)$ pulses realized by ESR with $\Omega = 18.896~MHz$, $\omega = 7~GHz$
- Virtual-Z gates with arbitrary phase angle heta