Exercise Class 5

Exercise 1

Consider a quantum harmonic oscillator with C = 200 fF, L = 50 nH. Calculate the single electron charging energy E_c , the inductive energy E_L , and the resonance frequency ω_0 .

Exercise 2

Consider two quantum harmonic oscillators with $C_1 = 700$ fF, $L_1 = 15$ nH, and $C_2 = 15$ fF, $L_2 = 700$ nH. For each oscillator, estimate the uncertainties ΔN , $\Delta \varphi$ on the number of Cooper pairs N and superconducting phase φ for the state $|0\rangle$ and determine whether the oscillator would be most suited for a *charge* qubit or a *phase* qubit, neglecting leakage to the upper states.

Exercise 3

Consider an Al/Al₂O₃/Al Josephson junction ($\varepsilon_{Al_2O_3} = 9$) with critical current density J₀ = 10 A/cm², W = 2 µm, L = 1 µm, t = 1nm.

- 1. Calculate the equivalent capacitance C_I and minimum equivalent inductance L_{I0} .
- 2. Draw a plot of the equivalent inductance $L_I(\varphi)$ as a function of the junction phase φ .
- 3. Estimate the frequencies of the $|0\rangle \rightarrow |1\rangle$ and $|1\rangle \rightarrow |2\rangle$ transitions.

Exercise 4

Determine the operational temperature for a Nb-based superconducting qubit ($T_{C,Nb} = 9.2 K$) operating at a frequency of 5 GHz.