Seconde prova in itinere

1.
Impondo che \(\frac{dx}{dt} = 2 F \),

\[\int dx = \frac{2 F}{k} \int dt, \quad \text{quindi} \quad k = \frac{2 F}{\dot{x}} \]

Impondo che \(\nu g = \frac{k}{\dot{x}} \frac{d\dot{E}}{dx} = 4 a y \sin (2ka) \)

\[x = \int_{0}^{t} \nu g(t) \, dt = \int_{0}^{t} \frac{4 a \dot{y} \sin (2ka \dot{x})}{\dot{x}} \, dt = \]

\[= \frac{2y}{q F} \left[1 - \cos \left(\frac{2q F a t}{\dot{x}} \right) \right] \]

\[\omega_B = \frac{2q Fa}{\dot{x}} = 609 \frac{T \text{rad}}{s} \]

\[\Delta x = \frac{2y}{q F} = 40 \text{ mm} \]

\[m^* = \frac{m}{\frac{d^2 \dot{E}}{dt^2} \bigg|_{0}} = \frac{2 \dot{x}^2}{8 \dot{a}^2 y}, \quad \text{quindi} \quad \frac{m}{m^*} = \frac{\dot{y}^2}{4 \dot{x}^2} = 8 \dot{a}^2 y = 756 \text{ cm}^2 \frac{V}{s} \]

2.

\[E_x = E_0 + \frac{\dot{x}^2 \dot{y}^2}{2 m^*} \]

l’energia dissipata \(\frac{\dot{x}^2 \dot{y}^2}{2 m^*} = 5 \dot{x} \dot{y} \), quindi

\[k^* = \sqrt{2 m \frac{5 \dot{x} \dot{y}}{\dot{x}}} = 79 \cdot 10^8 \text{ m}^{-1} \]

\[E_V = -\frac{\dot{x}^2 (k - k^*)^2}{2 m^* \dot{x}} \]
Preambolo l'energia del fotone \(E \).

\[
k\nu = E_G + \frac{\hbar}{2} \frac{k^2}{m_e^*} + \frac{\hbar}{2} \frac{(k^* - k_0)^2}{m^*\hbar}
\]

da cui ricaviamo \(k_0 \).

\[
\sqrt{(k\nu - E_G - \frac{\hbar^2}{2} \frac{k^*}{m_e^*}) \frac{2m_e^*}{\hbar^2}} = k^* = -k_0
\]

da cui \(k_0 = -3.65 \cdot 10^9 ~\text{m}^{-1} \)

3) \(m_{\text{bos}}^* = q^2 m_t^{2/3} m_e^{1/3} = 0.9 ~m_0 \)

\[
m = \frac{(2 m_{\text{bos}}^*)^{3/2}}{3 \pi^2 \frac{\hbar^2}{k^2}} (E_F)^{3/2}
\]

Esplicito \(E_F \):

\[
E_F = \left[\frac{\frac{2}{3} \frac{3}{2} m}{(2 m_{\text{bos}}^*)^{3/2}} \right]^{2/3} = \left(\frac{3 \pi m}{2 \pi^2 \frac{\hbar^2}{k^2}} \right)^{2/3} \frac{k^2}{2} = 5.5 ~\text{eV}
\]

\[
\langle E \rangle = \frac{7}{m_0} \int \frac{E (2 m_{\text{bos}}^*)^{3/2}}{2 \pi^2 \frac{\hbar^2}{k^2}^3} \sqrt[3]{E} = \frac{7}{m_0} \left(2 m_{\text{bos}}^* \right)^{3/2} \frac{2}{5} E_F^{5/2} = \frac{3}{5} E_F = 3.3 ~\text{eV}
\]

\[
\frac{1}{m_e} = \frac{3}{m_{\text{bos}}^*} + \frac{6}{m_t^*}
\]

\[
\rightarrow m_e = 0.189 m_0
\]

4) \(n = \frac{(2 m_e^*)^{1/2}}{\pi \frac{\hbar^2}{2 E_F}} \)

La densità atomica è la metà della densità elettronica, quindi.

\[
P = \frac{n}{2} = \frac{(2 m_e^*)^{1/2}}{\pi \frac{\hbar^2}{2 E_F}} = 2.36 \cdot 10^7 ~\text{cm}^{-1}
\]

\[
\nu_F = \sqrt{\frac{2 E_F}{m_e^*}} = 8.6 \cdot 10^2 ~\text{cm}^{-1}
\]

\[
T_F = \frac{E_F}{k} = 24.33 \text{ K}
\]
Supponendo che \(V_A = \frac{\rho(T)}{I} \), studio \(\rho(T) \)

\[
\rho(T) = \frac{1}{q_n \frac{\mu_n}{\mu_p} + q_p \frac{\mu_p}{\mu_p}} = \frac{1}{q_n \frac{\mu_n}{(\mu_n + \mu_p)} + q_p \frac{\mu_p}{(\mu_n + \mu_p)}}
\]

\(n_i \propto T^{\frac{3}{2}} \Rightarrow \frac{E_g}{2kT} \)

\(\mu_n \propto T^{-\frac{3}{2}} \Rightarrow \text{Non c'è contributo per impurezze, il silicio è intrinseco} \)

\(\mu_p \propto T^{-\frac{3}{2}} \)

Quindi \(\rho(T) \propto T^{\frac{3}{2}} \rightarrow \rho(T) \propto T^{\frac{3}{2}} = e^{\frac{E_g}{2kT}} \)

\[
\frac{\rho(400)}{\rho(300)} = e^{-\frac{E_g}{2kT} \left(\frac{1}{400} - \frac{1}{300} \right)}
\]

Quindi

\[
I(300 \text{ K}) = \frac{V_A}{\rho(300 \text{ K})} = 100 \mu A
\]

\[
I(400 \text{ K}) = \frac{V_A}{\rho(400 \text{ K})} = \frac{V_A}{\rho(300 \text{ K})} \cdot e^{-\frac{E_g}{2kT} \left(\frac{1}{400} - \frac{1}{300} \right)} =
\]

\[
= 100 \mu A \cdot e^{-\frac{E_g}{2kT} \left(\frac{1}{400} - \frac{1}{300} \right)} = 22.3 \text{ mA}
\]
Siamo dati:
\[n = N_c e^{\frac{E_c - E_F}{K T}} \]
\[n = \frac{N_D}{1 + 2 e^{\frac{E_F - E_D}{K T}}} \]
\[n = \frac{N_D}{2 e^{\frac{2 K T}{E_F - E_D}}} \]
Ipotizziamo \(E_F - E_D \gg K T \)

Quindi:
\[N_c e^{\frac{E_c - E_F}{K T}} = \frac{N_D e^{\frac{E_D - E_F}{K T}}}{2} \]
\[\frac{2 N_c}{N_D} = e^{\frac{E_D - E_F}{K T}} \]
\[E_F = \frac{E_D + E_c}{2} - \frac{K T}{2} \ln \left(\frac{2 N_c}{N_D} \right) = \frac{2 E_c - (E_c - E_D)}{2} - \frac{K T}{2} \ln \left(\frac{2 N_c}{N_D} \right) = \]
\[= \frac{2 E_G - (E_c - E_D)}{2} - \frac{K T}{2} \ln \left(\frac{2 N_c (300 K)}{N_D} \left(\frac{95}{300} \right)^{3/2} \right) \approx 1.058 \text{ eV} \]

Sovverte l'ipotesi iniziale: \(E_F - E_D = 58 \text{ meV} \gg 3.9 \text{ meV} = K T \) OK!

\[p = \frac{N_v}{N_c} e^{\frac{E_v - E_F}{K T}} \]
\[E_v - E_F = \ln \left(\frac{N_A}{10 N_v} \right) \]
\[E_F = E_v - \frac{K T}{2} \ln \left(\frac{N_A}{10 N_v} \right) = E_v + \frac{K T}{2} \ln \left(10 \frac{N_v (300)}{N_A} \left(\frac{95}{300} \right)^{3/2} \right) \approx 15.9 \text{ meV} \]

Impongo \(E_v = 0 \text{ eV} \).
La velocità di saturazione è

\[v_{\text{SAT}} = \frac{1}{2} \sqrt{\frac{2 \cdot \text{E}_{\text{Fou}}}{m}} = 5.9 \cdot 10^6 \text{ cm/s} \]

\[F_{\text{SAT}} = \frac{v_{\text{SAT}}}{\mu N} = 1.98 \cdot 10^4 \frac{V}{\text{cm}} \]

Per \(F_1 = 10^4 \frac{V}{\text{cm}} \), \(J = \frac{q^2 \rho \Sigma}{\mu N} = \frac{q^2 \rho \mu N F_1}{1 + \frac{\mu N F_1}{v_{\text{SAT}}}} = 3.8 \frac{\text{kA}}{\text{cm}^2} \)

Per \(F_2 = 10^5 \frac{V}{\text{cm}} \), \(J = \frac{q^2 \rho \mu N F_2}{1 + \frac{\mu N F_2}{v_{\text{SAT}}}} = 8.2 \frac{\text{kA}}{\text{cm}^2} \)

Dall'uguaglianza delle forze di Lorentz e di Coulomb otteniamo:

\[q = q F = q \frac{V_H}{W} \]
\[V = \mu N F = \mu N \frac{V_L}{L} \]

Quindi

\[q \frac{\mu N}{L} \frac{V_L}{W} = q \frac{V_H}{W} \rightarrow \frac{\mu N}{L} = \frac{L}{W} \frac{V_H}{V_L} \frac{7}{B} = 4.94 \frac{\text{cm}^2}{V_S} \]

Drogaggio \(N_d \)

\[I = J \cdot \frac{W_H}{9} = q N_d \mu N \frac{V_L}{L} \frac{V_H}{W} \]

\[N_d = \frac{q q N_d \mu N \frac{V_L}{L} \frac{V_H}{W}}{I} = 9.4 \cdot 10^{16} \frac{\text{cm}^2}{V_S} \]

Nel Si, a temperatura \(T = 6.3 \text{ meV} \), quindi \(v_{\text{SAT}} = \frac{1}{2} \sqrt{\frac{2 \cdot \text{E}_{\text{Fou}}}{m}} \)

\[F_{\text{SAT}} = \frac{v_{\text{SAT}}}{\mu N} = \frac{1}{2 \mu N} \sqrt{\frac{2 \cdot \text{E}_{\text{Fou}}}{m}} = 7.68 \cdot 10^4 \frac{V}{\text{cm}} \]

\[F = \frac{V_L}{L} = 3 \cdot 10^4 \frac{V}{\text{cm}} \]

Si è in regime saturato, quindi il calcolo di prima per \(\mu N \) è erroneo, non vede l'apposizione di un contributo di corrente di solicitazione.
6) In assenza di campo esterno, $j_{\text{tot}} = 0$, quindi

$$j_{\text{tot}} = j_{\text{diff}} + j_{\text{drift}} = 0$$

$$j_{\text{drift}} = -j_{\text{diff}}$$

$$j_{\text{diff}} = -q D p \frac{dp}{dx} = -q \frac{kT}{q} \mu_p N_{ae} \frac{1}{L} = -6200 \frac{A}{cm^2}$$

$$j_{\text{drift}} = 6200 \frac{A}{cm^2}$$

$$F = \frac{j_{\text{drift}}}{q \mu_p n}$$

$$F_{\text{int}} = \frac{j_{\text{drift}}}{q \mu_p n} = 64.6 \frac{V}{cm} \text{ in } x = L$$

$$F_{\text{int max}} = \frac{j_{\text{drift}}}{q \mu_p n} = 129.2 \frac{V}{cm} \text{ in } x = 0$$

10) Il profilo dei minortari in accento è $n'(x) = n'(x_0) e^{-\frac{|x-x_0|}{L_N}}$, quindi $n'(x_0 + 1 \mu m) = n'(x_0) e^{-\frac{1}{L_N}} = 2.9 \cdot 10^{11} \text{ cm}^{-3}$

Infine $n'(x_0 + 1 \mu m) = \text{diff}$, da cui $L_N = -1 \mu m \frac{L_N}{\ln \left(\frac{n'(x_0 + 1 \mu m)}{n'(x_0)} \right)} = 282 \text{ nm}$

 Sapendo che $L_N = \sqrt{\tau_N D_N} = \sqrt{\tau_N \frac{kT}{q \mu_n}}$, trovo

$$\tau_N = \frac{L_N^2}{kT\mu_n} = 24 \mu s$$