Exercise Class 1

Exercise 1

Calculate all possible values of the angular momentum *L*, of its projection on the z-axis L_z , and of the magnetic dipole momentum along z μ_z of an electron when l = 2, and plot them graphically.

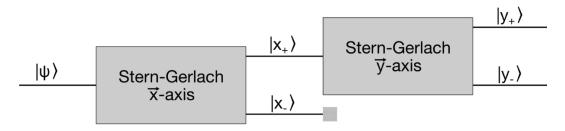
Exercise 2

A qubit is localized on the Bloch sphere by angles $\theta = 50^{\circ}$ and $\phi = 10^{\circ}$. Draw the state on the Bloch sphere and calculate the state vector in the $\{|0\rangle, |1\rangle\}$ basis and the probability of measuring the basis states.

Exercise 3

Consider a qubit $|\psi\rangle = \left(\frac{1}{2} + \frac{i}{2}\right)|0\rangle - \left(\frac{1}{2\sqrt{2}} + i\frac{\sqrt{3}}{2\sqrt{2}}\right)|1\rangle$.

- a. Locate the state on the Bloch sphere by calculating the corresponding angles θ , ϕ .
- b. Calculate the global rotation angle δ and the equivalent state $|\psi'\rangle$ with purely real α' coefficient.


Exercise 4

Consider two states $|\psi\rangle$, $|\psi'\rangle$ differing only by a global phase factor $e^{i\gamma}$. Show that the probability of measuring a state $|s\rangle$ is identical for $|\psi\rangle$ and $|\psi'\rangle$, for any target state $|s\rangle$.

Exercise 5

Consider the Stern-Gerlach experimental setup in Fig. 1, where the input qubit is prepared in state $|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle - \left(\frac{1+\sqrt{3}}{4} - i\frac{1-\sqrt{3}}{4}\right)|1\rangle.$

- a. Calculate the measurement probability for states $|x_+\rangle$, $|x_-\rangle$ and $|y_+\rangle$, $|y_-\rangle$ after the corresponding experimental setups.
- b. Suppose now to collimate both the $|x_+\rangle$, $|x_-\rangle$ output beams into the second SG setup. Calculate the measurement probability for $|y_+\rangle$, $|y_-\rangle$ after the second SG setup.

