Exercise Class 2

Exercise 1

Derive the Pauli operator for direction \vec{n} described by $\theta = \frac{\pi}{2}$, $\phi = \frac{\pi}{4}$, calculate its corresponding eigenvectors and eigenvalues, and plot them on the Bloch sphere.

Exercise 2

Consider the truth table:

Input state $ \psi_{in} angle$	Output state $ \psi_{out} angle$
0>	$ -\rangle$
1>	+>

Calculate the operator \hat{O} such that $|\psi_{out}\rangle = \hat{O}|\psi_{in}\rangle$.

Exercise 3

Consider a state $|\psi\rangle$. Knowing that $P_0(|\psi\rangle) = 0.2$, $P_1(|\psi\rangle) = 0.8$, $P_0(H|\psi\rangle) = 0.6$, $P_1(H|\psi\rangle) = 0.4$, $P_0(HS^\dagger|\psi\rangle) = 0.7$, $P_1(HS^\dagger|\psi\rangle) = 0.3$, estimate the angles θ , ϕ localizing the state on the Bloch sphere.

Exercise 4

Consider a two-qubit system with state $|\psi\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$. Determine whether the state is a product state or entangled state.

Exercise 5

Consider the two-qubit circuit in Fig. 1, where input qubits $|\psi_1\rangle$, $|\psi_2\rangle$ are prepared in the $|0\rangle$ and $|1\rangle$ state respectively. Determine the equivalent circuit operator \hat{O} and the output state $|\psi_o\rangle$ of the circuit.

$$|\psi_1\rangle$$
 — H — — $|\psi_0\rangle$ $|\psi_2\rangle$ — + — + — —