Exercise Class 3

Exercise 1

Consider an operator \hat{O} with truth table:

Input state $ \psi_{in} angle$	Output state $ \psi_{out} angle$
0>	$ -\rangle$
1>	$ +\rangle$

Calculate the angles ϕ , θ , λ to implement \hat{O} with two rotations around \vec{z} and one rotation around \vec{y} .

Exercise 2

Consider an electron subject to a magnetic field B = 2T directed along \vec{z} . Determine the position of the energy levels $|0\rangle$, $|1\rangle$, the qubit frequency ω_0 and the maximum operation temperature.

Exercise 3

Consider an electron subject to a magnetic field B = 2T directed along \vec{z} . Determine the Larmor frequency ω_L and the time t_1 for which the magnetic field must be applied to operate a gate \hat{S} .

Exercise 4

An electron is prepared in a state $|\psi_0\rangle$ with $\theta = 45^\circ$, $\phi = 0^\circ$ and immersed in a static magnetic field B = 1 T directed along \vec{z} . Draw a quoted plot of the probability of measuring the $|0\rangle$ and $|+\rangle$ state along time.

Exercise 5

An electron is immersed in a static magnetic field B = 1 T directed along \vec{z} . Calculate the timing accuracy of a control system to provide a rotation angle accuracy $\Delta \theta = \frac{\pi}{1000}$.