Exercise Class 4

Exercise 1

Consider an electron subject to a static magnetic field $B_0=1\,T$ along \vec{z} and a resonant magnetic field of amplitude $B_1=1\,mT$ along \vec{x} coupled to the electron. After calculating the frequency of the resonant field, derive:

- a) the pulse envelope amplitude to operate an \hat{X} gate, when the pulse duration is $t_1 = 100 \ ns$.
- b) the pulse duration to operate an \hat{X} gate, when the pulse envelope amplitude is $\eta = 0.5$.

Exercise 2

Consider an electron subject to a static magnetic field $B_0=1$ T along \vec{z} . A resonant magnetic field with tunable phase of amplitude $B_1=1$ m along \vec{x} is coupled to the electron by an on/off switch with no amplitude modulation. Calculate the frequency of the resonant field and draw the pulse schedule to operate the gate $\hat{O}=\hat{H}\cdot\hat{X}$.

Exercise 3

An electron is immersed in a static magnetic field $B=1\,T$ directed along \vec{z} and coupled to a resonant magnetic field of amplitude $B_1=1\,mT$ along \vec{x} . Calculate the timing accuracy of a control system to provide a rotation angle accuracy $\Delta\theta=\frac{\pi}{1000}$ along \vec{x} .

Exercise 4

Consider a quantum system with natural frequency $\omega_{01}=2\pi\cdot 5~GHz$ and anharmonicity $\Delta\omega=2\pi\cdot 200~MHz$ where a π -rotation pulse along \vec{x} is operated by ESR. Compare the driving amplitudes η and spectral amplitudes \mathcal{B} of the driving field for the $|1\rangle \rightarrow |2\rangle$ transition for a driving pulse with:

- a) rectangular envelope of amplitude η_1 and width $t_1 = 10 \ ns$.
- b) rectangular envelope of amplitude η_2 and width $t_2 = 100 \ ns$.
- c) Gaussian envelope of amplitude η_3 with FWHM $\Delta t = 10~ns$.