
Esercitazione 8

Esercizio 1

Si consideri la buca a pareti infinite in figura, dove a = 0.4 nm e al cui centro è posta una barriera di potenziale deltiforme di modulo u_0 . Sapendo che la densità di probabilità dello stato non-stazionario associato ai primi due autostati oscilla con frequenza v =10 THz, determinare le energie E_1 , E_2 degli autostati e il modulo u_0 della barriera. Si traccino inoltre gli andamenti della densità di probabilità dello stato non-stazionario associato ai primi due autostati, $\Psi = a_1\Psi_1 + a_2\Psi_2$ con $a_1 = a_2$, per $t_1 = 0$, $t_2 = h/2\Delta E$, $t_3 = 3h/4\Delta E$, dove ΔE è la differenza di energia fra i primi due autostati.

Esercizio 2

Una particella è caratterizzata da una relazione del tipo $\omega(k) = 2\omega_0 \sin(ka/2)$, con a = 0.2 nm, $\omega_0 = 7$ Trad/s. Considerando un pacchetto d'onde gaussiano centrato in $k0 = 2.2 \cdot 10^9$ m⁻¹, $\sigma_k = k_0/10$, calcolare l'andamento di dispersione $\sigma_x(t)$ del pacchetto stesso, riportandolo in un grafico quotato.

Esercizio 3

Si considerino le relazioni di dispersione $E(k) = ak^2$ ed $E(k) = bk^4$, con a = 16.5 meV·nm² e b = 8.25 meV·nm⁴. Si trovi il valore di $k = k_0$ per cui i pacchetti d'onda associati hanno la stessa velocità di gruppo v_g , specificandone il valore. Quale dei due pacchetti si disperde maggiormente?

Esercizio 4

Un elettrone in un cristallo è descritto da un'autofunzione $\psi_k(x)$ con $k=3\cdot 10^9\,m^{-1}$. Sapendo che sono necessari 6 passi reticolari affinché l'autofunzione $\psi_k(x)$ ritorni in fase, calcolare il passo reticolare a. Tracciare, inoltre, il profilo della parte reale della funzione inviluppo e il profilo della parte reale dell'autofunzione su 12 passi reticolari, sapendo che la funzione di Bloch è di tipo pari con un solo massimo in corrispondenza di ogni atomo.

Esercizio 5

Si consideri un cristallo monodimensionale costituito da 13 atomi. Si tracci la funzione inviluppo per il massimo valore di k, il minimo valore di k non nullo, ed un valore intermedio a piacere. Tracciare i possibili andamenti dell'autofunzione dell'elettrone per questi 3 valori di k, sapendo che la funzione di Bloch $u_k(x)$ è di tipo pari con un solo massimo in corrispondenza dell'atomo, e non si annulla in corrispondenza della barriera che separa due atomi adiacenti.