
- 1. Si consideri il reticolo obliquo in **Fig. 1**, dove a = 1 nm, b = 1.5 nm, θ = 70°. Dopo aver disegnato la corrispondente cella di Wigner-Seitz, calcolare la densità atomica superficiale e il packing factor.
- 2. Calcolare il commutatore $[\hat{x}, \hat{p}]$ per gli operatori posizione $\hat{x} = x$ e quantità di moto $\hat{p} = -i\hbar \frac{\partial}{\partial x}$ per una generica autofunzione $\psi(x)$.
- 3. Una sfera S di tungsteno di diametro d=2 cm irradia la stessa potenza di un corpo nero BB avente pari diametro e temperatura $T_1=2T_S$. Nota la lunghezza d'onda del picco dello spettro di emissione di BB $\lambda_1=1$ μ m, determinare temperatura e potenza irradiata dalla sfera S.
- 4. Si consideri un generico profilo di potenziale $V(x) = \alpha |x|^{\beta}$. Nota la dipendenza dal numero quantico degli autovalori $n^{3/4}$, e sapendo che il rilassamento dal quarto al terzo autostato causa l'emissione di un fotone di lunghezza d'onda $\lambda = 1$ µm, determinare il valore dei parametri α , β .
- 5. Si consideri il box di potenziale 2D a pareti infinite mostrato in **Fig. 2**, dove a = 1 nm, b = 2 nm. Dopo aver calcolato l'energia del primo autostato, si scriva la corrisponde autofunzione per esteso e si determini la lunghezza d'onda delle due onde piane che interagendo tra loro determinano l'onda stazionaria.
- 6. Un elettrone in un cristallo di passo a=0.5 nm è descritto da un'autofunzione $\psi_k(x)=u_k(x)e^{ikx}$. Sapendo che l'autofunzione torna in fase dopo N=4 passi reticolari, determinare il valore del parametro k dell'autofunzione. Tracciare quindi il profilo della parte reale della funzione inviluppo e della parte reale dell'autofunzione su 6 passi reticolari, sapendo che la funzione di Bloch ha un solo massimo in corrispondenza dell'atomo e si annulla nella regione di barriera.
- 7. Si consideri il diagramma a bande del semiconduttore 3D in **Fig. 3**, caratterizzato da due famiglie di minimi isoenergetici in banda di conduzione ($m^*_{\Gamma} = 0.2m_e$, $m^*_{1} = 0.8m_e$). Calcolare le masse efficaci DOS e di conduzione per gli elettroni.
- 8. Si considerino due campioni metallici con funzioni lavoro $W_1 = 3$ eV e $W_2 = 5$ eV. Determinare a che temperatura T_2 deve essere portato il secondo materiale per garantire la stessa densità di corrente termoionica del primo campione alla temperatura $T_1 = 450$ K, facendo ragionevoli approssimazioni.
- 9. Si consideri la barretta di silicio drogato sottoposta ad esperimento di effetto Hall in **Fig. 4** (W = 500 nm, L = 1 μ m, t = 100 nm, V_L = 1V, V_H = 10 mV, I = 10 μ A, B = 0.5 T, T = 300 K). Determinare tipologia, mobilità e concentrazione della specie drogante.
- 10. Un semiconduttore di tipo p è irraggiato da una sorgente luminosa che induce fotogenerazione uniforme nel volume del materiale. Sapendo che la concentrazione degli elettroni aumenta di un fattore 10⁵, determinare di quanto si sposta a temperatura ambiente il livello di quasi Fermi per gli elettroni Fn rispetto al livello di Fermi all'equilibrio E_F.

Solid State Electronics 03.09.2024

1. Consider the oblique lattice in **Fig. 1**, where a = 1 nm, b = 1.5 nm, $\theta = 70^{\circ}$. Draw the corresponding Wigner-Seitz cell, and compute the surface atomic density and packing factor.

- 2. Calculate the commutator $[\hat{x}, \hat{p}]$ for the position $\hat{x} = x$ and momentum $\hat{p} = -i\hbar \frac{\partial}{\partial x}$ operators, for a generic eigenfunction $\psi(x)$.
- 3. A tungsten sphere S with diameter d = 2 cm radiates the same power of a black body BB with same diameter and temperature $T_1 = 2T_S$. Knowing that the emission spectrum of BB has a peak at wavelength $\lambda_1 = 1$ µm, estimate temperature and radiated power of the sphere S.
- 4. Consider a generic potential profile $V(x) = \alpha |x|^{\beta}$. Knowing that the eigenstates show a $n^{3/4}$ dependence on the quantum number, and that a relaxation from the fourth to the third eigenstate causes the emission of a photon with wavelength $\lambda = 1 \mu m$, calculate α and β .
- 5. Consider the 2D potential box in **Fig. 2**, where a = 1 nm, b = 2 nm. Calculate the energy of the first eigenstate. Then, write the corresponding eigenfunction and determine the wavelength of the plane waves whose interaction gives birth to the stationary wave.
- 6. An electron in a crystal with lattice step a = 0.5 nm is described by an eigenfunction $\psi_k(x) = u_k(x)e^{ikx}$. Knowing that the eigenfunction undergoes a full phase shift after N = 4 lattice steps, determine the value of the parameter k of the eigenfunction. Draw the profile of the real part of the envelope function and eigenfunction on 6 lattice steps, knowing that the Bloch function has one maximum in correspondence of the atom and is nil in the barrier region.
- 7. Consider the band diagram of the 3D semiconductor in **Fig. 3**, characterized by two isoenergetic minima families in the conduction band ($m_{\Gamma}^* = 0.2m_e$, $m_t^* = 0.3m_e$, $m_l^* = 0.8m_e$). Calculate the effective DOS and conduction masses for electrons.
- 8. Consider two metallic samples with work functions $W_1 = 3$ eV and $W_2 = 5$ eV. Determine the temperature T_2 at which the second sample must be heated to guarantee the same thermionic current density of the first sample at temperature $T_1 = 450$ K, under reasonable approximations.
- 9. Consider the doped silicon slab undergoing an Hall effect experiment in **Fig. 4** (W = 500 nm, L = 1 μ m, t = 100 nm, V_L = 1V, V_H = 10 mV, I = 10 μ A, B = 0.5 T, T = 300 K). Determine type, mobility and concentration of the dopant species.
- 10. A p-type semiconductor is illuminated by a light source inducing uniform photogeneration in the material. Knowing that the concentration of electrons rises by a factor 10^5 , calculate the displacement of the quasi-Fermi level for electrons F_n with respect to the Fermi level at equilibrium E_F at room temperature.

Costanti fisiche:

massa dell'elettrone costante di Planck carica elettronica costante di Boltzmann velocità della luce costante dielettrica nel vuoto costante di Stefan-Boltzmann costante di Wien

costante dielettrica relativa ϵ_r concentrazione intrinseca n_i [cm⁻³] gap di energia E_G [eV] densità di stati effettiva in banda di conduzione N_C [cm⁻³] densità di stati effettiva in banda di valenza N_V [cm⁻³]

$$\begin{split} &m_0 = 9.109 \cdot 10^{-31} \, kg \\ &h = 6.626 \cdot 10^{-34} \, J \, s \\ &e = 1.602 \cdot 10^{-19} \, C \\ &k_B = 1.381 \cdot 10^{-23} \, J \, K^{-1} \\ &c = 2.998 \cdot 10^8 \, m \, s^{-1} \\ &\epsilon_0 = 8.85419 \cdot 10^{-12} \, F \, m^{-1} \\ &\sigma = 5.67 \cdot 10^{-8} \, W \, m^{-2} \, K^{-4} \\ &c_W = 2.8 \cdot 10^{-3} \, K \, m \end{split}$$

Si	Ge
11.7	16
1.45 x 10 ¹⁰	2.4 x 10 ¹³
1.12	0.66
2.8 x 10 ¹⁹	1.04 x 10 ¹⁹
1.04 x 10 ¹⁹	0.6 x 10 ¹⁹