Esercitazione 10

Esercizio 1

Si consideri un materiale con banda di conduzione e valenza descritti dalle relazioni $E_C = E_g + Bk^2$ ed $E_V = -Ak^2$, dove A = 0.1 eV·nm², B = 5A, $E_g = 1$ eV. Il materiale è irraggiato con una sorgente luminosa di lunghezza d'onda $\lambda = 620$ nm.

- a) Determinare k con cui l'elettrone è promosso in banda di conduzione.
- b) Determinare l'energia cinetica della lacuna e dell'elettrone coinvolti nel processo e la velocità di gruppo associata all'elettrone.
- c) Assumendo che l'elettrone interagisca con 10 fononi, calcolare l'energia media del fonone E_{phn} e il momento medio del fonone k_{phn} affinché l'elettrone termalizzi sul fondo della banda di conduzione.
- d) Trascurando i fenomeni di scattering, calcolare la variazione di energia per elettroni e lacune e la velocità a seguito dell'applicazione di un campo elettrico F=350~kV/cm dopo $\Delta t=2~fs$.

Esercizio 2

Si consideri un materiale caratterizzato da E_g = 1 eV, a = 0.5 nm, apice della banda di valenza in k = 0, fondo della banda di conduzione in k_0 = 0.2 π /a. Sapendo che la massa efficace degli elettroni in BC è m^*_{BC} = 0.1 m_e e quella delle lacune in BV è m^*_{BV} = 0.5 m_e ,

- a) Determinare l'espressione analitica delle due bande. Il materiale è a gap diretto o indiretto?
- b) Calcolare l'energia minima E_{min} e la corrispondente lunghezza d'onda massima λ_{max} di un fotone che possa essere assorbito con un processo a 3 particelle. Determinare inoltre la quantità di moto del fonone associato.
- c) Calcolare l'energia minima E_{min} e la lunghezza d'onda massima λ_{max} di un fotone che possa essere assorbito con un processo a 2 particelle.

Esercizio 3

Calcolare la massa DOS, la massa di conduzione e la mobilità degli elettroni in BC sapendo che il semiconduttore in esame ha g = 6, $m_{\rm l}^* = 0.85 m_{\rm e}$, $m_{\rm t}^* = 0.15 m_{\rm e}$, $\tau_{\rm m} = 100$ fs. Nota la concentrazione elettronica n = $5\cdot10^{16}$ cm⁻³, calcolare quindi la resistività trascurando il contributo delle lacune.

Esercizio 4

Si consideri un sistema costituito da silicio con $m_1^* = 0.916 m_e$, $m_t^* = 0.19 m_e$. Determinare di quanto cambierebbe la mobilità μ n se si cambiasse:

- a) La massa trasversale m^{*}_t di un fattore ½
- b) La massa longitudinale m^{*}₁ di un fattore ½

Esercizio 5

Si considerino le bande di valenza del silicio con m^*_{hh} = 0.537 m_e , m^*_{lh} = 0.193 m_e . Calcolare la massa di conduzione per la banda di valenza.