Esercitazione 12

Esercizio 1

Si consideri silicio intrinseco (m^*_{hh} = 0.537 m_0 , m^*_{lh} = 0.193 m_0 , m^*_{t} = 0.19 m_0 , m^*_{l} = 0.916 m_0). Ricordando che il gap del silicio è E_g = 1.12 eV, si ricavi la posizione del livello di Fermi E_F a temperatura ambiente.

Esercizio 2

Calcolare la resistività, la mobilità e la concentrazione intrinseca del silicio e dell'arseniuro di gallio a temperatura ambiente, assumendo per entrambi i materiali una costante di rilassamento del momento τ^*_m = 100 fs.

Si:
$$m_{hh}^* = 0.537m_0$$
, $m_{lh}^* = 0.193m_0$, $m_{l}^* = 0.19m_0$, $m_{l}^* = 0.916m_0$, Eg = 1.12 eV, g = 6

GaAs:
$$m_{hh}^* = 0.51 m_0$$
, $m_{lh}^* = 0.082 m_0$, $m_n^* = 0.067 m_0$, Eg = 1.42 eV, g = 6

Esercizio 3

Trascurando la dipendenza del gap dalla temperatura, si calcoli la concentrazione intrinseca dell'arseniuro di gallio a 450 K, sapendo che E_g = 1.42 eV, $N_c(300 \text{ K})$ = 4.7 · 10^{17} cm-3, $N_v(300 \text{ K})$ = $7 \cdot 10^{18}$ cm⁻³. Rappresentare poi il corrisponde grafico di Arrhenius per la concentrazione intrinseca.

Esercizio 4

Si consideri silicio drogato con impurezze di tipo donore $N_D = 10^{17}$ cm⁻³, posizione del livello donore $E_D = E_C - 30$ meV, densità equivalente di stati in banda di conduzione $N_C(300 \text{ K}) = 3.22 \cdot 10^{19}$ cm⁻³, e concentrazione intrinseca a temperatura ambiente $n_i(300 \text{ K}) = 1.4 \cdot 10^{10}$ cm⁻³. Trascurando la dipendenza dalla temperatura delle densità di stati in banda di conduzione e valenza, si ricavi:

- i) La posizione del livello di Fermi a 0 K
- ii) La temperatura di transizione dal regime di freeze-out al regime estrinseco
- iii) La temperatura di transizione dal regime estrinseco al regime intrinseco
- iv) Le temperature ottenute sono sottostime o sovrastime delle effettive temperature di transizione?