08/01/2026 — Appello 4

Esercizio 1

Si consideriilreticolo in Fig. 1, dove a =1 nm. Si identifichi il tipo di reticolo, indicando una coppia di
vettori primitivi, una cella primitiva e calcolando la densita atomica superficiale. Determinare quindi
la tensione di accelerazione minima necessaria per osservare almeno un picco di diffrazione dai
piani {110} in un setup di diffrazione elettronica.
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Soluzione 1

Si tratta di un reticolo rettangolare centrato. Esempi di celle primitive sono la cella di Wigner-Seitz e
la cella rombica in figura (colore blu), che contengono esattamente 1 atomo per cella.
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Non € invece una cella primitiva la cella rettangolare (rossa), poiché contiene al suo interno piu diun
atomo (nello specifico, 1 atomo centrale piu 4 atomi ciascuno condiviso fra 4 celle, per un totale di
2 atomi). Ai fini del calcolo della densita atomica superficiale, le tre celle sono invece equivalenti e
restituiscono tutte lo stesso valore. Presa per comodita la cella rettangolare, si ha quindi:
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Per determinare la minima energia di un fascio di raggi X che permetta di osservare diffrazione dai
piani {110}, ricordiamo la legge di diffrazione di Bragg:

nl = 2dsinf

La distanza interplanare per i piani {110} si puo ricavare da considerazioni geometriche, essendo pari
a meta della diagonale del quadrato di lato 2a:
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Ricordando che per un fascio elettronico Uenergia e la lunghezza d’onda sono inversamente
proporzionali:
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La minima energia corrisponde alla massima lunghezza d’onda. Massimizzando pertanto la
relazione di Bragg:
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T) = (min(n) = 1,max(sinf = 1)) = 2d;19 = 2.82 nm

Amax = max(

Da cui ’'energia minima:
hZ

Emin = W =0.19eV

Corrispondente quindi a una tensione di accelerazione:

E .
Vinin = ?”:awv



Esercizio 2

In un setup di esperimento fotoelettrico in assenza di tensione applicata (Va = 0 V), gli elettroni
fotogenerati incidono sull’anodo ad una velocita v, = 10 m/s. Nota la funzione lavoro del catodo
W =4 eV, calcolare la lunghezza d’onda A della radiazione incidente e la tensione Vg, al di sotto della
quale non si osserva effetto fotoelettrico.

Soluzione 2

In assenza di tensione applicata, 'energia cinetica per gli elettroni all’anodo € pari a:

1
Exa=Epn —W +qV, =Eph—W=§mev§

Nota la velocita degli elettroni all’anodo, € possibile ricavare U'energia della radiazione entrante:
1 2
Epp =W + Emeva = 6.84¢eV

A cui corrisponde quindi una lunghezza d’onda:

hc
Aph = =—=181.5nm
Epn

Affinché non si osservi effetto fotoelettrico, il setup deve essere polarizzato in modo da annullare
I’energia cinetica dei portatori all’lanodo:

Epp —W
Exa = ph_W+qVA:0_>VA:—T=—2.84—V



Esercizio 3

Si consideri il sistema buca-barriera in Fig. 2, dove a =1 nm, b = 2 nm, V, = 5 eV. Usando
l'approssimazione di buca a pareti infinite al solo fine del calcolo degli autostati della buca, si
determini il campo F da applicare alla barriera affinché il tempo medio di tunneling per un elettrone
sul primo livello confinato E; sia tun = 10 ns. Commentare qualitativamente come cambierebbe il
risultato ottenuto se si considerasse l'altezza finita della barriera nel calcolo dell’autostato.

Soluzione 3

In approssimazione di buca a pareti infinite, il primo autostato & localizzato a:
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=0.377 eV

ILtempo medio di tunneling attraverso la barriera b € dato da:

o tar
TUN P,
Dove iltempo di andata/ritorno é:
2a 2a
tAR = ? = = 55 fS

[2E,
m
Affinché il tempo medio di tunneling sia 10 ns, deve quindi essere:

t
Pp=-8 —55.1077

trun

In assenza di campo applicato e in approssimazione WKB, la probabilita di tunneling attraverso la
barriera ¢ pari a:
V2me(Vo—E1)
Pro= e2b = o™F P =77.10720
Che non & quindi sufficiente a garantire il tempo medio di tunneling richiesto. Considerando adesso

un campo applicato non nullo, il sistema potrebbe trovarsi in condizioni di tunneling Fowler-
Nordheim o tunneling diretto. Supponendo che il sistema si trovi in tunneling Fowler-Nordheim,
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P..= e 3 qiF - F= —————— (V,—E|)2=47—
r=e 3thogPT( o~ E1) nm

Per validare il risultato, occorre verificare Uipotesi Fowler-Nordheim:
eV
—qFb <E, > 5eV — 4.7%- 2nm =—441eV <0377 eV

Lipotesi € quindi verificata, pertanto F = 4.7 V/nm & il campo richiesto.

Qualitativamente, se si considerasse la finitezza della barriera, 'autostato E, si localizzerebbe ad
energie inferiori, risultando in (i) un incremento del tempo di andata-ritorno (minore energia cinetica)
e (ii) una maggiore altezza di barriera:

3
4 V ( )3 o (VO - El)E
3 thogP 0 log(E;)
Considerando quindi:
3
E; < E; & log(E]) <log(Ey) & (Vo — E1)Z > (V) — E)3*/?

Il campo atteso sara:

3
F' log(Ey) (Vo—E1)? ,
F " log(ED) 3> 12 F>F
&L51 (Vo — Ey)2

(Valutando numericamente si ottiene: E{ = 0.317 eV, F' = 4.85 %).



Esercizio4

Si consideri un oscillatore armonico V(x) = %2 ax?, con a = 2 eV/nm?, e uno stato W ottenuto come
sovrapposizione paritaria del primo e terzo autostato, W = 295(W, + W,). Calcolare la frequenza di
oscillazione w13 dello stato non-stazionario W e tracciare qualitativamente il modulo quadro
dell’autofunzione |W|? ai tempit= 0, t = /2W13, t = W/ W13, t = 3T/ 2W13.

Soluzione 4

Gli autostati dell’oscillatore armonico sono descritti da:

1
E, = hwy (n+§>

Dove wy = /mi = 593 Trad/s. Considerando lo stato W ottenuto come sovrapposizione del primo
e

e terzo autostato, si pu0 scrivere:
¥ =a(¥i(x,6) + W5 (x, 1)) = a(ths (e ™" + 3 (x)e30) = ae T (Y, (x) + Pae T @sm)
Il cui modulo quadro & quindi dato da:
—_i 2
1% = |al?|h; (x) + P3(x)e 4|

Dove Aw = w3 — wq;=1.18" 1015% =2m-189THz. Le autofunzioni Y, e Y3 presentano,
rispettivamente, un lobo e tre lobi. Ai tempi richiesti:

1
W12(0) = 2 Iy + s

VaN
) Altempo t =0, i lobi centrali si sommano. | lobi laterali
A N — (et di Y3 interagiscono debolmente con le code di ¥,
3
o (X) + ()R creando dei piccoli lobi secondari in corrispondenza
1 '3 L e
0 +'¢!3(x)e'iA‘”'I2 delle regioni periferiche della buca.
__/\_—
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X [nm] S (@ 1 _m2
T W1 (5a5) =3 s + e 2] =
1 a1 2 2
== —iPs]® = - (Ie|° + [P3]9)
— 1, (%) 2 2
2= PSS P -iAw
- _'”’s(x)e' 1 Al tempo t =ﬁ, le autofunzioni si sommano in
/1 /1 7IAJJ‘1 . . - . .
DEN- _1”1(")”’3(")8‘ modulo quadro. | lobi secondari sono piu evidenti del
— I, () +1,0e" "% caso t=0, mentre diminuisce lampiezza del lobo
centrale (la massa di probabilita si sposta
progressivamente verso i lobi secondari).
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W12 () = S lws — ¥sl?

Al tempo t=&, le autofunzioni interferiscono

distruttivamente. In particolare, il lobo centrale di
13 ha adesso segno negativo, mentre i lobi
secondari interagiscono costruttivamente con le
code di ;. Il risultato € uno svuotamento della
regione intorno a x = 0 in favore di un incremento
della probabilita di localizzare la particella nelle
parti periferiche della buca.

3w 2

W12 (5h5) =¥ +¥se 72| =
1 A 2 1 2 2
:§|¢1+u/13| =E(|¢1| + [3]%)

3T
Al tempo t = he

nuovamente in modulo quadro. Il risultato netto ¢ il

le autofunzioni si sommano

. T .
medesimo delcasot = YV dove adesso la massa di

probabilita sta progressivamente tornando verso il
centro della buca.



Esercizio 5

Un elettrone in un cristallo di passo a = 3 nm & descritto da un’autofunzione (x) = ux(x)e™. Sapendo
che lautofunzione torna in fase dopo 2 passi reticolari, determinare il valore del vettore d’onda
cristallino k. Tracciare quindi il profilo della parte reale dell’autofunzione su 6 passi reticolari,
sapendo che la funzione di Bloch € di tipo pari con un solo massimo in corrispondenza dell’atomo.

Soluzione 5

Sapendo che l'autofunzione torna in fase dopo 2 passi reticolari:

_21r

etk2a — oi2m _, |
2a

T
=-= 1.047 - 10° m™1

Il grafico su 6 passi reticolari € quindi:

— Inviluppo — Funzione di Bloch u, —Autofunzione d;k
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Esercizio 6

Un semiconduttore 3D & descritto da una struttura a bande comprendente due bande di valenza
(m’y = 0.2mo, Mm"u = 0.8my), entrambe con apice in k = 0, e una banda di conduzione con minimo
isotropo nel punto I (m’r = 0.3m,). Determinare la massa DOS e di conduzione per lacune ed
elettroni.

Soluzione 6

Per la banda di conduzione, essendo il minimo singolo e isotropo, la massa DOS e la massa di
conduzione coincidono con la massa efficace nel punto I':

* p— * p— * —
Mposn = Mg = M = 0.3m

Per la banda di valenza, occorre considerare il contributo di entrambe le bande. Per la massa DOS:
2
3 3 3\3
* 5 — * * _ x5 *x 7 _
Mposp? = Myn = Mposp = (mHH2 + mLHZ) = 0.865m,

Per la massa di conduzione, occorre pesare il contributo di ciascuna banda rispetto alla densita di
stati:

3 3
* 5 * 5
mpy2 Myp2
3 3 1 1 3
* 5 * 5 * 5 * 5 * 9
1 Mposp? Mpos,p? mpp2 + myy?2 . Mpos,p?
. * * = 3 cp = 1 1=0.6m
Mep mpy Myy



Esercizio 7

Si consideri il materiale a gap indiretto in Fig. 3, dove E; = 1 eV, ko = 2-10° m”, msc = 0.2mo €
m’sv = 0.6m,. Determinare la minima energia di un fotone che possa essere assorbito in un processo
a due particelle, e le velocita dell’elettrone e della lacuna appena dopo l'assorbimento del fotone.

E

Soluzione 7

Le bande possono essere descritte in approssimazione parabolica come:

h2k?

Ev(k) = - ngv
hz(k — ko)2
Ec(k) —_ Eg + TEC

In un processo adue particelle, ilmomento k dell’elettrone deve conservarsi. Consideriamo pertanto
ilgap in funzione di k:

K2 (k — ky)? N h2k?

E . (k) =E, +
(k) 9 2mp.e 2mp,

ILtesto richiede di determinare il k per la transizione a minima energia. Derivando si ottiene:

dE, h?(k — ko) A%k
= * + *
dk My mpy

1 1 k _ mj
k< — + *>= 2 5 k=ky—2X—=15-10°m"?
Mmpge Mpy Mpc Mpe + Mpy

=0

A cui corrisponde un’energia:

h?(k — ko)® LS

= 1.191eV
2mise 2m, ¢

Epn = Eg(E) =Eg+

Le velocita dell’elettrone e della lacuna sono date dalle rispettive velocita di gruppo:



_ 10k (k= ko)

= = —2.897 - 10°
R ok Vet Mhe m/s
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Per la lacuna, occorre tenere conto del segno negativo, essendo la velocita a cui viaggia la vacanza
di elettroni:

10Ey, hk .
— =2.897-10°m/s

Vh = —%th:l‘c =m—BV



Esercizio 8

Un campione di cesio (W, =2.14 eV) alla temperatura T, = 600 K emette la stessa densita di corrente
termoionica di un secondo campione di materiale ignoto alla temperatura T, = 900 K. Dopo aver
determinato la funzione lavoro W, del secondo materiale, si tracci il grafico di Arrhenius (log(J) vs
1/KkT) per la densita di corrente J per i due materiali, facendo ragionevoli approssimazioni.

Soluzione 8

Ricordando la legge di Richardson-Laue-Dushman:

w
Jen = AT?e" kT

Come ragionevoli approssimazioni, si considerano A; =~ A, e si trascura la dipendenza quadratica
dalla temperatura. Allora:

(W W, w, Ww.

La_ ) o MW

w,_ T,
kT, kT,) — =—= S W,==W, =321eV
7 L T, T, Tt ¢

Nel grafico di Arrhenius la coordinata x = 1/kT, mentre la coordinata y = log(J). Pertanto:

A

w
ﬁ) + 2log(kT) —

— =q-21 -
T a og(x) —Wx

w
y = log(J) = log(AT?) — — = log(
kT
In entrambi i casi il grafico di Arrhenius € approssimabile a una retta con pendenza -W; essendo
W, >W,, la pendenza del grafico per il secondo materiale sara maggiore della pendenza del grafico
peril cesio.

—W, (Caesium)

—W,

log(J)

1/kT



Esercizio 9

Si consideri il campione di silicio drogato n sottoposto ad esperimento di effetto Hall in Fig. 4
(No=10"%cm™3,t=15nm, L=10W =10 pm, g, = 1000 cm?V's™, V. =2 V). Nota V4 = 20 mV con verso
indicato in figura, determinare modulo e verso del campo magnetico B e della corrente | attraverso il
dispositivo.

Soluzione 9

La corrente fluisce in direzione x,. Il materiale & drogato n, pertanto i portatori maggioritari sono
elettroni che fluiscono in direzione x_. La tensione di Hall & orientata in direzione y_, corrispondente
a un accumulo di elettroni in direzione y,, a cui corrisponde un eccesso di carica positiva
all’equilibrio in direzione y_. Perché la forza di Lorentz agisca in direzione y_, il campo magnetico
deve essere orientato in direzione z_:

Vi

e

b

X

Il modulo si puo ricavare imponendo il bilancio tra la forza di Lorentz e la forza di Coulomb:
|F.| = quB = qFr = |F¢|

quF.B = qFr



La corrente si ricava invece dalla legge di Ohm, ricordando:

Wt
I = GVL :O-TVL

Dove la conducibilita & data da:
0 = qpiy + qniy = qNppy
Allora:

4%
I'=qNppy - -V, =48 uA



Esercizio 10

Si consideri una barretta di silicio (drogaggio n, Np = 10'® cm™, tempo di ricombinazione dei minoritari
T, = 100 ns) dove un fascio laser impone una concentrazione in eccesso di portatori minoritari in
superficie pari a d3p(0) = 10" cm=. Nota la mobilita delle lacune p, = 400 cm?V's™”, determinare la
distanza x; dalla superficie oltre la quale il semiconduttore si pud considerare all’equilibrio
termodinamico.

Soluzione 10

La concentrazione di minoritari in eccesso decade esponenzialmente lungo lo spazio per effetto dei
fenomeni di ricombinazione come:

X

Sp(x) = 6p(0)e »

Dove la lunghezza di diffusione per le lacune ¢ pari a:

;kT
Lp =\/Dptp = 7 UpTp = 10.176 um

Come punto di confine fra la condizione di fuori equilibrio e la condizione di equilibrio
termodinamico, si pud considerare la distanza x« in cui lUeccesso di portatori eguaglia la
concentrazione di lacune all’equilibrio po:

_*re n?
5p(xse) = 6p(0)e v =p, = N—l = 210.25cm™3
D
Da cui si ottiene:
opn(0
Xfe = Lp -log( Z;( )> = 297 um
0



