
08/01/2026 – Appello 4 
Esercizio 1 
Si consideri il reticolo in Fig. 1, dove a = 1 nm. Si identifichi il tipo di reticolo, indicando una coppia di 
vettori primitivi, una cella primitiva e calcolando la densità atomica superficiale. Determinare quindi 
la tensione di accelerazione minima necessaria per osservare almeno un picco di diffrazione dai 
piani {110} in un setup di diffrazione elettronica.   

 

Soluzione 1 
Si tratta di un reticolo rettangolare centrato. Esempi di celle primitive sono la cella di Wigner-Seitz e 
la cella rombica in figura (colore blu), che contengono esattamente 1 atomo per cella.  

 

Non è invece una cella primitiva la cella rettangolare (rossa), poiché contiene al suo interno più di un 
atomo (nello specifico, 1 atomo centrale più 4 atomi ciascuno condiviso fra 4 celle, per un totale di 
2 atomi). Ai fini del calcolo della densità atomica superficiale, le tre celle sono invece equivalenti e 
restituiscono tutte lo stesso valore. Presa per comodità la cella rettangolare, si ha quindi:  

𝜌𝑎𝑡 =
𝑁𝑎𝑡/𝑐𝑒𝑙𝑙

𝐴𝑐𝑒𝑙𝑙
=

1 + 4 ⋅
1
4

2𝑎2
=

2

2𝑎2
=

1

𝑎2
= 1 ⋅ 1014 𝑐𝑚−2 



Per determinare la minima energia di un fascio di raggi X che permetta di osservare diffrazione dai 
piani {110}, ricordiamo la legge di diffrazione di Bragg:  

𝑛𝜆 = 2𝑑 sin 𝜃 

La distanza interplanare per i piani {110} si può ricavare da considerazioni geometriche, essendo pari 
a metà della diagonale del quadrato di lato 2a: 

𝑑110 =
2𝑎√2

2
= 𝑎√2 = 1.41 𝑛𝑚 

Ricordando che per un fascio elettronico l’energia e la lunghezza d’onda sono inversamente 
proporzionali:  

𝜆 =
ℎ

𝑝
=

ℎ

√2𝑚𝐸
 

La minima energia corrisponde alla massima lunghezza d’onda. Massimizzando pertanto la 
relazione di Bragg:  

𝜆𝑚𝑎𝑥 = max (
2𝑑110 sin 𝜃

𝑛
) = (min(𝑛) = 1, max(sin 𝜃 = 1)) = 2𝑑110 = 2.82 𝑛𝑚 

Da cui l’energia minima:  

𝐸𝑚𝑖𝑛 =
ℎ2

2𝑚𝜆2
= 0.19 𝑒𝑉 

Corrispondente quindi a una tensione di accelerazione:  

𝑉𝑚𝑖𝑛 =
𝐸𝑚𝑖𝑛

𝑞
= 0.19 𝑉 

  



Esercizio 2 

In un setup di esperimento fotoelettrico in assenza di tensione applicata (VA = 0 V), gli elettroni 
fotogenerati incidono sull’anodo ad una velocità va = 106 m/s. Nota la funzione lavoro del catodo 
W = 4 eV, calcolare la lunghezza d’onda λ della radiazione incidente e la tensione Vstop al di sotto della 
quale non si osserva effetto fotoelettrico. 

Soluzione 2 
In assenza di tensione applicata, l’energia cinetica per gli elettroni all’anodo è pari a:  

𝐸𝑘,𝑎 = 𝐸𝑝ℎ − 𝑊 + 𝑞𝑉𝐴 = 𝐸𝑝ℎ − 𝑊 =
1

2
𝑚𝑒𝑣𝑎

2 

Nota la velocità degli elettroni all’anodo, è possibile ricavare l’energia della radiazione entrante:  

𝐸𝑝ℎ = 𝑊 +
1

2
𝑚𝑒𝑣𝑎

2 = 6.84 𝑒𝑉 

A cui corrisponde quindi una lunghezza d’onda:  

𝜆𝑝ℎ =
ℎ𝑐

𝐸𝑝ℎ
= 181.5 𝑛𝑚 

Affinché non si osservi effetto fotoelettrico, il setup deve essere polarizzato in modo da annullare 
l’energia cinetica dei portatori all’anodo:  

𝐸𝑘,𝑎 = 𝐸𝑝ℎ − 𝑊 + 𝑞𝑉𝐴 = 0 → 𝑉𝐴 = −
𝐸𝑝ℎ − 𝑊

𝑞
= −2.84 𝑉 

  



Esercizio 3 
Si consideri il sistema buca-barriera in Fig. 2, dove a = 1 nm, b = 2 nm, V0 = 5 eV. Usando 
l’approssimazione di buca a pareti infinite al solo fine del calcolo degli autostati della buca, si 
determini il campo F da applicare alla barriera affinché il tempo medio di tunneling per un elettrone 
sul primo livello confinato E1 sia tTUN = 10 ns. Commentare qualitativamente come cambierebbe il 
risultato ottenuto se si considerasse l’altezza finita della barriera nel calcolo dell’autostato. 

 

Soluzione 3 
In approssimazione di buca a pareti infinite, il primo autostato è localizzato a:  

𝐸1 =
ℎ2

8𝑚𝑎2
= 0.377 𝑒𝑉 

Il tempo medio di tunneling attraverso la barriera b è dato da:  

𝑡𝑇𝑈𝑁 =
𝑡𝐴𝑅

𝑃𝑇
 

Dove il tempo di andata/ritorno è:  

𝑡𝐴𝑅 =
2𝑎

𝑣
=

2𝑎

√2𝐸1
𝑚

= 5.5 𝑓𝑠 

Affinché il tempo medio di tunneling sia 10 ns, deve quindi essere:  

𝑃𝑇 =
𝑡𝐴𝑅

𝑡𝑇𝑈𝑁
= 5.5 ⋅ 10−7 

In assenza di campo applicato e in approssimazione WKB, la probabilità di tunneling attraverso la 
barriera è pari a:  

𝑃𝑇,0 = 𝑒−2𝛼𝑏 = 𝑒−2
√2𝑚𝑒(𝑉0−𝐸1)

ℏ
𝑏 = 7.7 ⋅ 10−20 

Che non è quindi sufficiente a garantire il tempo medio di tunneling richiesto. Considerando adesso 
un campo applicato non nullo, il sistema potrebbe trovarsi in condizioni di tunneling Fowler-
Nordheim o tunneling diretto. Supponendo che il sistema si trovi in tunneling Fowler-Nordheim,  



𝑃𝑇 = 𝑒
−

4
3

√2𝑚𝑒

𝑞ℏ𝐹
(𝑉0−𝐸1)

3
2

  → 𝐹 =  −
4

3

√2𝑚𝑒

𝑞ℏ log 𝑃𝑇

(𝑉0 − 𝐸1)
3
2 = 4.7

𝑉

𝑛𝑚
 

Per validare il risultato, occorre verificare l’ipotesi Fowler-Nordheim: 

𝑉0 − 𝑞𝐹𝑏 ≤ 𝐸1 → 5 𝑒𝑉 − 4.7
𝑒𝑉

𝑛𝑚
⋅ 2 𝑛𝑚 = −4.41 𝑒𝑉 ≤ 0.377 𝑒𝑉 

L’ipotesi è quindi verificata, pertanto F = 4.7 V/nm è il campo richiesto.  

Qualitativamente, se si considerasse la finitezza della barriera, l’autostato E1 si localizzerebbe ad 
energie inferiori, risultando in (i) un incremento del tempo di andata-ritorno (minore energia cinetica) 
e (ii) una maggiore altezza di barriera:  

𝐹 =  −
4

3

√2𝑚𝑒

𝑞ℏ log 𝑃𝑇

(𝑉0 − 𝐸1)
3
2 ∝

(𝑉0 − 𝐸1)
3
2

log(𝐸1)
 

Considerando quindi: 

𝐸1
′ < 𝐸1 ↔ log(𝐸1

′) < log(𝐸1) ↔ (𝑉0 − 𝐸1′)
3
2 > (𝑉0 − 𝐸1)3/2  

Il campo atteso sarà: 

𝐹′

𝐹
=

log (𝐸1)

log(𝐸1
′)

⋅
(𝑉0 − 𝐸1

′)
3
2

(𝑉0 − 𝐸1)
3
2

> 1 → 𝐹′ > 𝐹 

(Valutando numericamente si ottiene: 𝐸1
′ = 0.317 𝑒𝑉, 𝐹′ = 4.85

𝑉

𝑛𝑚
).   

 

  



Esercizio 4 

Si consideri un oscillatore armonico V(x) = ½ αx2, con α = 2 eV/nm2, e uno stato Ψ ottenuto come 
sovrapposizione paritaria del primo e terzo autostato, Ψ = 2-0.5(Ψ1 + Ψ3). Calcolare la frequenza di 
oscillazione ω13 dello stato non-stazionario Ψ e tracciare qualitativamente il modulo quadro 
dell’autofunzione |Ψ|2 ai tempi t = 0, t = π/2ω13, t = π/ω13, t = 3π/2ω13. 

Soluzione 4 
Gli autostati dell’oscillatore armonico sono descritti da:  

𝐸𝑛 = ℏ𝜔0 (𝑛 +
1

2
) 

Dove 𝜔0 = √
𝛼

𝑚𝑒
= 593 𝑇𝑟𝑎𝑑/𝑠. Considerando lo stato Ψ ottenuto come sovrapposizione del primo 

e terzo autostato, si può scrivere:  

Ψ = 𝑎(Ψ1(𝑥, 𝑡) +  Ψ3(𝑥, 𝑡)) = 𝑎(𝜓1(𝑥)𝑒−𝑖𝜔1𝑡 + 𝜓3(𝑥)𝑒−𝑖𝜔3𝑡) = 𝑎𝑒−𝑖𝜔1𝑡(𝜓1(𝑥) +  𝜓3𝑒−𝑖(𝜔3−𝜔1)𝑡) 

Il cui modulo quadro è quindi dato da:  

|Ψ|2 = |𝑎|2|𝜓1(𝑥) + 𝜓3(𝑥)𝑒−𝑖Δ𝜔𝑡|
2

 

Dove Δ𝜔 = 𝜔3 −  𝜔1 = 1.18 ⋅ 1015 𝑟𝑎𝑑

𝑠
= 2𝜋 ⋅ 189 𝑇𝐻𝑧. Le autofunzioni ψ1 e ψ3 presentano, 

rispettivamente, un lobo e tre lobi. Ai tempi richiesti:  

|Ψ|2(0) =
1

2
|𝜓1 + 𝜓3|2 

Al tempo t = 0, i lobi centrali si sommano. I lobi laterali 
di 𝜓3 interagiscono debolmente con le code di 𝜓1, 
creando dei piccoli lobi secondari in corrispondenza 
delle regioni periferiche della buca. 

 

 

|Ψ|2 (
𝜋

2Δ𝜔
) =

1

2
|𝜓1 + 𝜓3𝑒−

𝜋

2|
2

= 

=
1

2
|𝜓1 − 𝑖𝜓3|2 =

1

2
(|𝜓1|2 + |𝜓3|2) 

Al tempo 𝑡 =
𝜋

2Δ𝜔
, le autofunzioni si sommano in 

modulo quadro. I lobi secondari sono più evidenti del 
caso t = 0, mentre diminuisce l’ampiezza del lobo 
centrale (la massa di probabilità si sposta 
progressivamente verso i lobi secondari).  

 



|Ψ|2 (
𝜋

Δ𝜔
) =

1

2
|𝜓1 −  𝜓3|2 

Al tempo 𝑡 =
𝜋

Δ𝜔
, le autofunzioni interferiscono 

distruttivamente. In particolare, il lobo centrale di 
𝜓3 ha adesso segno negativo, mentre i lobi 
secondari interagiscono costruttivamente con le 
code di 𝜓1. Il risultato è uno svuotamento della 
regione intorno a x = 0 in favore di un incremento 
della probabilità di localizzare la particella nelle 
parti periferiche della buca.  

 

|Ψ|2 (
3𝜋

2Δ𝜔
) =

1

2
|𝜓1 + 𝜓3𝑒−

3𝜋

2 |
2

= 

=
1

2
|𝜓1 + 𝑖𝜓3|2 =

1

2
(|𝜓1|2 + |𝜓3|2) 

Al tempo 𝑡 =
3𝜋

2Δ𝜔
, le autofunzioni si sommano 

nuovamente in modulo quadro. Il risultato netto è il 
medesimo del caso 𝑡 =

𝜋

2Δ𝜔
, dove adesso la massa di 

probabilità sta progressivamente tornando verso il 
centro della buca.  

  



Esercizio 5 
Un elettrone in un cristallo di passo a = 3 nm è descritto da un’autofunzione ψk(x) = uk(x)eikx. Sapendo 
che l’autofunzione torna in fase dopo 2 passi reticolari, determinare il valore del vettore d’onda 
cristallino k. Tracciare quindi il profilo della parte reale dell’autofunzione su 6 passi reticolari, 
sapendo che la funzione di Bloch è di tipo pari con un solo massimo in corrispondenza dell’atomo.   

Soluzione 5 
Sapendo che l’autofunzione torna in fase dopo 2 passi reticolari:  

𝑒𝑖𝑘⋅2𝑎 = 𝑒𝑖2𝜋 → 𝑘 =
2𝜋

2𝑎
=

𝜋

𝑎
= 1.047 ⋅ 109 𝑚−1 

Il grafico su 6 passi reticolari è quindi:  

 

 

 

 

  



Esercizio 6 

Un semiconduttore 3D è descritto da una struttura a bande comprendente due bande di valenza 
(m*

LH = 0.2m0, m*
HH = 0.8m0), entrambe con apice in k = 0, e una banda di conduzione con minimo 

isotropo nel punto Γ (m*
Γ = 0.3m0). Determinare la massa DOS e di conduzione per lacune ed 

elettroni. 

Soluzione 6 
Per la banda di conduzione, essendo il minimo singolo e isotropo, la massa DOS e la massa di 
conduzione coincidono con la massa efficace nel punto Γ: 

𝑚𝐷𝑂𝑆,𝑛
∗ = 𝑚𝑐,𝑛

∗ = 𝑚Γ
∗ = 0.3 𝑚0 

Per la banda di valenza, occorre considerare il contributo di entrambe le bande. Per la massa DOS:  

𝑚𝐷𝑂𝑆,𝑝
∗

3
2 = 𝑚𝐻𝐻

∗
3
2 + 𝑚𝐿𝐻

∗
3
2 → 𝑚𝐷𝑂𝑆,𝑝

∗ = (𝑚𝐻𝐻
∗

3
2 + 𝑚𝐿𝐻

∗
3
2)

2
3

= 0.865 𝑚0 

Per la massa di conduzione, occorre pesare il contributo di ciascuna banda rispetto alla densità di 
stati:  

1

𝑚𝑐,𝑝
∗ =

(
𝑚𝐿𝐻

∗
3
2

𝑚𝐷𝑂𝑆,𝑝
∗

3
2 

)

𝑚𝐿𝐻
∗ +

(
𝑚𝐻𝐻

∗
3
2

𝑚𝐷𝑂𝑆,𝑝
∗

3
2 

)

𝑚𝐻𝐻
∗ =

𝑚𝐿𝐻
∗

1
2 + 𝑚𝐻𝐻

∗
1
2

𝑚𝐷𝑂𝑆,𝑝
∗

3
2

→ 𝑚𝑐,𝑝
∗ =

𝑚𝐷𝑂𝑆,𝑝
∗

3
2

𝑚𝐿𝐻
∗

1
2 + 𝑚𝐻𝐻

∗
1
2

= 0.6 𝑚0 

  



Esercizio 7 
Si consideri il materiale a gap indiretto in Fig. 3, dove Eg = 1 eV, k0 = 2∙109 m-1, m*

BC = 0.2m0 e 
m*

BV = 0.6m0. Determinare la minima energia di un fotone che possa essere assorbito in un processo 
a due particelle, e le velocità dell’elettrone e della lacuna appena dopo l’assorbimento del fotone. 

 

Soluzione 7 
Le bande possono essere descritte in approssimazione parabolica come:  

𝐸𝑉(𝑘) =  −
ℏ2𝑘2

2𝑚𝐵𝑉
∗  

𝐸𝐶(𝑘) = 𝐸𝑔 +
ℏ2(𝑘 − 𝑘0)2

2𝑚𝐵𝐶
∗  

In un processo a due particelle, il momento k dell’elettrone deve conservarsi. Consideriamo pertanto 
il gap in funzione di k:  

𝐸𝑔(𝑘) = 𝐸𝑔 +
ℏ2(𝑘 − 𝑘0)2

2𝑚𝐵𝐶
∗ +

ℏ2𝑘2

2𝑚𝐵𝑉
∗   

Il testo richiede di determinare il k per la transizione a minima energia. Derivando si ottiene:  

𝑑𝐸𝑔

𝑑𝑘
=

ℏ2(𝑘 − 𝑘0)

𝑚𝐵𝐶
∗ +

ℏ2𝑘

𝑚𝐵𝑉
∗ = 0 

𝑘 (
1

𝑚𝐵𝐶
∗ +

1

𝑚𝐵𝑉
∗ ) =

𝑘0

𝑚𝐵𝐶
∗       →         𝑘̅ = 𝑘0

𝑚𝐵𝑉
∗

𝑚𝐵𝐶
∗ + 𝑚𝐵𝑉

∗ = 1.5 ⋅ 109 𝑚−1 

A cui corrisponde un’energia:  

𝐸𝑝ℎ = 𝐸𝑔(𝑘̅) = 𝐸𝑔 +
ℏ2(𝑘̅ − 𝑘0)

2

2𝑚𝐵𝐶
∗ +

ℏ2𝑘̅2

2𝑚𝐵𝑉
∗ = 1.191 𝑒𝑉 

Le velocità dell’elettrone e della lacuna sono date dalle rispettive velocità di gruppo: 



𝑣𝑒 =
1

ℏ

𝜕𝐸𝐶

𝜕𝑘
|𝑘=𝑘̅ =

ℏ(𝑘̅ − 𝑘0)

𝑚𝐵𝐶
∗ = −2.897 ⋅ 105 𝑚/𝑠 

Per la lacuna, occorre tenere conto del segno negativo, essendo la velocità a cui viaggia la vacanza 
di elettroni: 

𝑣ℎ = −
1

ℏ

𝜕𝐸𝑉

𝜕𝑘
|𝑘=𝑘̅ =

ℏ𝑘̅

𝑚𝐵𝑉
∗ = 2.897 ⋅ 105 𝑚/𝑠 

  



Esercizio 8 
Un campione di cesio (W1 = 2.14 eV) alla temperatura T1 = 600 K emette la stessa densità di corrente 
termoionica di un secondo campione di materiale ignoto alla temperatura T2 = 900 K. Dopo aver 
determinato la funzione lavoro W2 del secondo materiale, si tracci il grafico di Arrhenius (log(J) vs 
1/kT) per la densità di corrente J per i due materiali, facendo ragionevoli approssimazioni. 

Soluzione 8 
Ricordando la legge di Richardson-Laue-Dushman:  

𝐽𝑡ℎ = 𝐴𝑇2𝑒−
𝑊
𝑘𝑇 

Come ragionevoli approssimazioni, si considerano 𝐴1 ≃ 𝐴2 e si trascura la dipendenza quadratica 
dalla temperatura. Allora:  

𝐽2

𝐽1
= 𝑒

−(
𝑊1
𝑘𝑇1

−
𝑊2
𝑘𝑇2

)
= 1 →

𝑊1

𝑇1
=

𝑊2

𝑇2
→ 𝑊2 =

𝑇2

𝑇1
𝑊1 = 3.21 𝑒𝑉  

Nel grafico di Arrhenius la coordinata x = 1/kT, mentre la coordinata y = log(J). Pertanto:  

𝑦 = log(𝐽) = log(𝐴𝑇2) −
𝑊

𝑘𝑇
= log (

𝐴

𝑘2
) + 2 log(𝑘𝑇) −

𝑊

𝑘𝑇
= 𝛼 − 2 log(𝑥) − 𝑊𝑥 

In entrambi i casi il grafico di Arrhenius è approssimabile a una retta con pendenza -W; essendo 
W2 > W1, la pendenza del grafico per il secondo materiale sarà maggiore della pendenza del grafico 
per il cesio.   

 

 

  



Esercizio 9 
Si consideri il campione di silicio drogato n sottoposto ad esperimento di effetto Hall in Fig. 4 
(ND = 1018 cm-3, t = 15 nm, L = 10W = 10 μm, μn = 1000 cm2V-1s-1, VL = 2 V). Nota VH = 20 mV con verso 
indicato in figura, determinare modulo e verso del campo magnetico B e della corrente I attraverso il 
dispositivo.  

 

Soluzione 9 
La corrente fluisce in direzione 𝑥+. Il materiale è drogato n, pertanto i portatori maggioritari sono 
elettroni che fluiscono in direzione 𝑥−. La tensione di Hall è orientata in direzione 𝑦_, corrispondente 
a un accumulo di elettroni in direzione 𝑦+, a cui corrisponde un eccesso di carica positiva 
all’equilibrio in direzione 𝑦−. Perché la forza di Lorentz agisca in direzione 𝑦−, il campo magnetico 
deve essere orientato in direzione 𝑧−: 

 

Il modulo si può ricavare imponendo il bilancio tra la forza di Lorentz e la forza di Coulomb:  

|ℱ𝐿| = 𝑞𝑣𝐵 = 𝑞𝐹𝑇 = |ℱ𝐶| 

𝑞𝜇𝐹𝐿𝐵 = 𝑞𝐹𝑇  

𝐵 =
𝑉𝐻

𝑉𝐿
⋅

𝐿

𝑊
⋅

1

𝜇
= 1 𝑇 



La corrente si ricava invece dalla legge di Ohm, ricordando:  

𝐼 = 𝐺𝑉𝐿 = 𝜎
𝑊𝑡

𝐿
𝑉𝐿 

Dove la conducibilità è data da:  

𝜎 = 𝑞𝑝𝜇𝑝 + 𝑞𝑛𝜇𝑛 ≃ 𝑞𝑁𝐷𝜇𝑛 

Allora:  

𝐼 = 𝑞𝑁𝐷𝜇𝑛 ⋅
𝑊𝑡

𝐿
⋅ 𝑉𝐿 = 48 𝜇𝐴 

  



Esercizio 10 
Si consideri una barretta di silicio (drogaggio n, ND = 1018 cm-3, tempo di ricombinazione dei minoritari 
τp = 100 ns) dove un fascio laser impone una concentrazione in eccesso di portatori minoritari in 
superficie pari a δp(0) = 1015 cm-3. Nota la mobilità delle lacune μp = 400 cm2V-1s-1, determinare la 
distanza xfe dalla superficie oltre la quale il semiconduttore si può considerare all’equilibrio 
termodinamico. 

Soluzione 10 
La concentrazione di minoritari in eccesso decade esponenzialmente lungo lo spazio per effetto dei 
fenomeni di ricombinazione come:  

𝛿𝑝(𝑥) = 𝛿𝑝(0)𝑒
−

𝑥
𝐿𝑝  

Dove la lunghezza di diffusione per le lacune è pari a:  

𝐿𝑃 = √𝐷𝑝𝜏𝑝 = √
𝑘𝑇

𝑞
 𝜇𝑝𝜏𝑝 = 10.176 𝜇𝑚 

Come punto di confine fra la condizione di fuori equilibrio e la condizione di equilibrio 
termodinamico, si può considerare la distanza xfe in cui l’eccesso di portatori eguaglia la 
concentrazione di lacune all’equilibrio p0:  

𝛿𝑝(𝑥𝑓𝑒) = 𝛿𝑝(0)𝑒
−

𝑥𝑓𝑒

𝐿𝑝 = 𝑝0 =
𝑛𝑖

2

𝑁𝐷
= 210.25 𝑐𝑚−3 

Da cui si ottiene:  

𝑥𝑓𝑒 =  𝐿𝑝 ⋅ log (
𝛿𝑝(0)

𝑝0
) = 297 𝜇𝑚 

 


