1. Si consideri un elettrone in un reticolo cristallino descritto dalla relazione di dispersione $E(k) = E_0/2[1 - \cos(ka)]$, con $a = 1 \text{ nm}$ ed $E_0 = 1 \text{ eV}$. Si calcoli il valore della pulsazione di Bloch ω_B quando al cristallo è applicato un campo elettrico $F = 1 \text{ MV/cm}$. Per quale valore del tempo medio di rilassamento del momento τ_m si possono vedere almeno 100 oscillazioni di Bloch? Quanto vale la corrispondente mobilità?

2. Si consideri una buca rettangolare di profondità $V_0 = 5 \text{ eV}$. Sapendo che un elettrone, rilassando dal terzo al primo livello confinato, rilascia un fotone di lunghezza d'onda 320 nm, calcolare la larghezza della buca (si faccia uso dell'aprossimazione di buca a pareti infinite).

3. Si considerino l'elettrone A e B posti nella buca di Fig. 1. L'elettrone A attraversa la barriera per tunneling partendo da fondo banda, mentre l'elettrone B assorbe un fotone prima di attraversare la barriera per tunneling. Quanto dev'essere la λ del fotone assorbito da B affinché la probabilità di tunnel aumenti di un fattore 10^7 rispetto ad A?

4. Un flusso di neutroni termici $(m_n = 1839m_0)$ incide su un cristallo con passo reticolare $d = 5 \text{ Å}$. Trovare la minima temperatura di emissione dei neutroni affinché si possa osservare almeno un picco di diffrazione.

5. Si consideri il gradino negativo indicato in Fig. 2. Sapendo che un elettrone iniettato da sinistra, incontrando il gradino, dimezza la sua lunghezza d'onda di DeBroglie, calcolare l'energia E dell'elettrone e la probabilità di riflessione al gradino.

6. Le concentrazioni intrinseche in un semiconduttore sono $n_i = 5.83 \times 10^{17} \text{ cm}^{-3}$ e $n_i = 3.74 \times 10^{10} \text{ cm}^{-3}$ alle temperature di 300 K e 400 K, rispettivamente. Si valuti il gap d'energia.

7. Si consideri l'esperimento di effetto Hall riportato in Fig. 3. Applicando una tensione longitudinale $V_L = 1 \text{ V}$ ad una laminetta di semiconduttore con concentrazione di drogaggio donore pari a $N_D = 5 \times 10^{15} \text{ cm}^{-3}$, si misura una corrente pari a $I_L = 200 \text{ µA}$. Si calcoli la tensione trasversale (in modulo e verso) ed il corrispondente campo elettrico dovuto all'effetto Hall. Si calcoli la mobilità dei portatori maggioritari.

8. Si calcoli l'energia di legame dell'eccitone nel germanio, ricordando i valori delle masse efficaci di elettrone (longitudinale $m_1 = 1.588m_0$, trasversale $m_t = 0.08152m_0$ e lacuna $m_h = 0.21m_0$).
1. Si consideri un semiconduttore 3D intrinseco con reticolo cubico. Si dica quanti atomi sono contenuti in ciascuna cella primitiva. Sapendo che ciascun atomo del semiconduttore alloca 4 elettroni in banda di valenza a \(T = 0 \) K, determinare il numero di bande di valenza. Conoscendo la relazione \(m^*_n = 2m_0^* \), tra le masse DOS in banda di conduzione (\(m^*_c \)) ed in valenza (\(m^*_p \)), determinare la posizione del livello intrinseco a \(T = 300 \) K. Determinare lo stesso livello energetico ma in 2 dimensioni.

2. Si consideri un metallo 2D, in cui \(E_F = 0.4 \) eV e \(m^*_n = 0.75m_0 \). Si valuti la densità di elettroni in banda di conduzione e la loro energia media. Si calcoli inoltre la velocità di un elettrone \(\mathbf{a} \) \(E_F \) e la si confronti con la velocità di deriva di un elettrone a 1 kV/cm\(^{-1}\) (si assuma il tempo di rilassamento del momento \(t_m = 10^{-13} \) s e massa efficace di conduzione pari alla massa DOS). Si spieghi il motivo di tale differenza. Per il calcolo della corrente, quale valore di velocità è opportuno utilizzare?

3. Le concentrazioni intrinseche in un semiconduttore sono \(n_i = 5.83\times10^7 \) cm\(^{-3}\) e \(n_i = 3.74\times10^{10} \) cm\(^{-3}\) alle temperature di 300 K e 400 K, rispettivamente. Si valuti il gap di energia.

4. Si consideri un campione di silicio drogato \(N_D = 2\times10^{16} \) cm\(^{-3}\) e \(N_D = 5\times10^{16} \) cm\(^{-3}\). Si valuti la densità di elettroni e lacune e la posizione del livello di Fermi a temperatura ambiente.

5. Si consideri la transizione elettronica in \(\mathbf{F} \). Dopo essere promosso dallo stato 1 allo stato 2 per assorbimento di un fotone, l'elettrone giunge al fondo della banda di conduzione (stato 3) rilasciando \(\Delta E = 0.8 \) eV. Calcolare la lunghezza d'onda del fotone assorbito.

6. Un semiconduttore intrinseco presenta due bande di conduzione, coincidenti nel minimo in \(k = 0 \) e con masse efficaci \(m^* \) e \(2m^* \). Rappresentare le superfici di Fermi per le due bande. Quale delle due bande conterrà più elettroni ad una certa temperatura? Determinare la frazione di elettroni in banda di conduzione apparente a ognuna delle due bande. Determinare i contributi percentuali delle due bande alla corrente di drift e di diffusione.

7. Si consideri l’esperimento di effetto Hall riportato in \(\mathbf{F} \). Applicando una tensione longitudinale \(V_L = 1 \) V ad una laminetta di semiconduttore con concentrazione di draggio donore pari a \(N_D = 5\times10^{15} \) cm\(^{-3}\), si misura una corrente pari a \(I_L = 200 \) mA. Si valuti la frazione di elettroni e lacune e la densità di portatori maggioritari.

8. Ad un cubetto di silicio di lato 2 \(\mu \)m, drogato \(N_D = 10^{16} \) cm\(^{-3}\), \(\mu = 1400 \) cm\(^2\)/Vs, \(F_{SAT} = 10 \) kV/cm, viene applicata una tensione pari a 10 V. Si stima la potenza dissipata e il numero medio di fononi ottici generati nell’unità di tempo, considerando un’elettrica media per i fononi pari a 63 meV.

9. Una barretta di silicio drogata \(p \) (\(N_A = 10^{16} \) cm\(^{-3}\), \(\mu_p = 450 \) cm\(^2\)/Vs, \(\mu_n = 1400 \) cm\(^2\)/Vs) viene irraggiata otticamente. L'assorbimento ottico induce un eccesso di portatori in \(x = 0 \) pari a \(10^{16} \) cm\(^{-3}\). Assumendo un tempo di ricombinazione dei minoritari pari a \(3\times10^{-6} \) s, si valutino i livelli di quasi Fermi in \(x = 0 \) ed il profilo dei portatori.

10. Si calcoli l’energia di legame dell’eccitone nel germanio, ricordando i valori delle masse efficaci di elettrone (longitudinale \(m^*_n = 0.75m_0 \), trasversale \(m_t = 0.08152m_0 \)) e lacuna (\(m_h = 0.21m_0 \)).

Costanti fisiche:

- massa dell’elettrone: \(m_0 = 9.109\times10^{-31} \) kg
- carica elettrica: \(e = 1.602\times10^{-19} \) C
- costante di Planck: \(h = 6.626\times10^{-34} \) J s
- costante di Boltzmann: \(k_B = 1.381\times10^{-23} \) J K\(^{-1}\)
- carica di un elettrodi in vuoto: \(\varepsilon_0 = 8.85419\times10^{-12} \) F m\(^{-1}\)
- velocità di luce: \(c = 2.998\times10^8 \) m s\(^{-1}\)
- costante di Stefan-Boltzmann: \(\sigma = 5.67\times10^{-8} \) W m\(^{-2}\) K\(^{-4}\)
- costante di Wien: \(c_W = 2.8\times10^{-3} \) K m

Si	Ge
11.7 | 16
1.45 x 10\(^{10}\) | 2.4 x 10\(^{13}\)
1.12 | 0.66
2.8 x 10\(^{19}\) | 1.04 x 10\(^{19}\)
1.04 x 10\(^{19}\) | 0.6 x 10\(^{19}\) valenz
1. Consider an electron in a crystalline lattice with dispersion relationship given by \(E(k) = E_0/2(1 - \cos(ka)) \), with \(a = 1 \text{ nm} \) and \(E_0 = 1 \text{ eV} \). Evaluate the Bloch angular frequency \(\omega_B \), for an applied electric field \(F = 1 \text{ MVcm}^{-1} \). What is the momentum relaxation time \(\tau_m \) for which at least 100 Bloch oscillations are detected? What is the corresponding mobility?

2. Consider a square potential well with height \(V_0 = 5 \text{ eV} \). An electron, relaxing from the third to the first quantized level, emits a photon of wavelength 320 nm, calculate the well width (use the infinite well approximation).

3. Consider the electrons A and B in the potential well of Fig. 1. Electron A tunnels through the barrier from the bottom of the well, whereas electron B absorbs a photon before tunneling through the barrier. What is the photon \(\lambda \) that increases the tunneling probability by a factor \(10^7 \) in B with respect to A?

4. A beam of thermal neutron (\(m_n = 1839m_0 \)) is injected into a crystal with lattice parameter \(d = 5 \text{ Å} \). Find the minimum neutron temperature that allows the detection of at least one diffraction peak.

5. Consider the negative potential step in Fig. 2. The DeBroglie wavelength of an electron injected from the left decreases by a factor 2 by passing through the step. Calculate the energy \(E \) of the electron and the probability of being reflected at the step.

6. The intrinsic concentrations in a semiconductor are \(n_i = 5.83 \times 10^7 \text{ cm}^{-3} \) and \(n_i = 3.74 \times 10^{10} \text{ cm}^{-3} \) at temperatures 300 K and 400 K, respectively. Evaluate the energy gap.

7. An intrinsic semiconductor features 2 conduction bands, which are coincident in \(k = 0 \) and with effective masses m* and 2m*.

8. Consider the Hall effect experiment in Fig. 3. The application of a longitudinal voltage \(V_L = 1 \text{ V} \) to a semiconductor slab with doping concentration \(N_D = 5 \times 10^{15} \text{ cm}^{-3} \) induces a current \(I_L = 200 \mu\text{A} \). Evaluate the transversal voltage (both amplitude and direction) and the corresponding electric field due to Hall effect. Calculate the mobility of majority carriers.

9. An optical beam is injected into a silicon slab with p doping (\(N_A = 10^{16} \text{ cm}^{-3} \), \(\mu_p = 450 \text{ cm}^2/\text{Vs} \), \(\mu_n = 1400 \text{ cm}^2/\text{Vs} \)). Light absorption induces a carrier excess in \(x = 0 \) equal to \(10^{14} \text{ cm}^{-3} \). Assuming a recombination time of minority carriers equal to \(3 \times 10^{-6} \text{ s} \), evaluate the quasi Fermi levels in \(x = 0 \) and the carrier profile.

10. Calculate the binding energy of an exciton in germanium, recalling the values for the effective masses of the electron (longitudinal \(m_l = 1.588m_0 \), transversal \(m_t = 0.08152m_0 \)) and the hole (\(m_h = 0.21m_0 \)).
1. Consider a 3D intrinsic semiconductor with simple-cubic lattice. How many atoms are found within each primitive cell? Knowing that each semiconductor atom gives 4 atoms to the valence band at $T = 0$ K, determine the number of valence bands. Knowing the relation $m^*_n = 2m^*_p$ between DOS effective masses in the conduction band (m^*_n) and in the valence band (m^*_p), determine the position of the intrinsic level at $T = 300$ K. Determine the same level in 2 dimensions.

2. Consider a 2D metal, where $E_F = 0.4$ eV and $m^*_n = 0.75m_0$. Evaluate the electron density in the conduction band and their average energy. Calculate the velocity of an electron at E_F and compare it to the drift velocity of an electron at 1 kV/cm$^{-1}$ (assume a momentum relaxation time $t_m = 10^{-13}$ s and a conductivity effective mass equal to the DOS mass). Explain the difference. In calculating the current, which velocity should be considered?

3. The intrinsic concentrations in a semiconductor are $n_i = 5.83 \times 10^7$ cm$^{-3}$ and $n_i = 3.74 \times 10^{10}$ cm$^{-3}$ at temperatures 300K and 400K, respectively. Evaluate the energy gap.

4. Consider a silicon sample doped with $N_A = 2 \times 10^{16}$ cm$^{-3}$ and $N_D = 5 \times 10^{16}$ cm$^{-3}$. Evaluate the electron and hole density and the position of the Fermi level at room temperature.

5. Consider the electron transition in Fig. 4. After excitation from state 1 to state 2 by photon absorption, the electron reaches the bottom of the conduction band (state 3) by relaxing an energy $\Delta E = 0.8$ eV. Calculate the wavelength of the absorbed photon.

6. An intrinsic semiconductor features 2 conduction bands, which are coincident in $k = 0$ and with effective masses m^* and 2m^*. Draw the Fermi surfaces for the two bands. Which of the two bands contains more electrons at a given temperature? Determine the fraction of electrons belonging to each of the two conduction bands. Determine the percentage contribution of the two bands to the drift and diffusion currents.

7. Consider the Hall effect experiment in Fig. 3. The application of a longitudinal voltage $V_L = 1$ V to a semiconductor slab with doping concentration $N_D = 5 \times 10^{15}$ cm$^{-3}$ induces a current $I_L = 200$ μA. Evaluate the transversal voltage (both amplitude and direction) and the corresponding electric field due to Hall effect. Calculate the mobility of majority carriers.

8. In a silicon cube with size 2μm, doped with donors ($N_D = 10^{16}$ cm$^{-3}$, $\mu_n = 1400$ cm2/Vs, $F_{SAT} = 10$ kV/cm), a voltage of 10 V is applied. Estimate the dissipated power and the average number of optical phonons generated per unit time, assuming an average phonon energy of 63 meV.

9. An optical beam is injected into a silicon slab with p doping ($N_A = 10^{16}$ cm$^{-3}$, $\mu_p = 450$ cm2/Vs, $\mu_n = 1400$ cm2/Vs). Light absorption induces a carrier excess in $x = 0$ equal to 10^{14} cm$^{-2}$. Assuming a recombination time of minority carriers equal to 3×10^{-6} s, evaluate the quasi Fermi levels in $x = 0$ and the carrier profile.

10. Calculate the binding energy of an exciton in germanium, recalling the values for the effective masses of the electron (longitudinal $m_i = 1.588m_0$, transversal $m_i = 0.08152m_0$) and the hole ($m_h = 0.21m_0$).

Physical constants:

<table>
<thead>
<tr>
<th>massa dell’elettrone</th>
<th>$m_0 = 9.109 \times 10^{-31}$ kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>costante di Planck</td>
<td>$h = 6.626 \times 10^{-34}$ J s</td>
</tr>
<tr>
<td>carica elettrica</td>
<td>$e = 1.602 \times 10^{-19}$ C</td>
</tr>
<tr>
<td>costante di Boltzmann</td>
<td>$k_B = 1.381 \times 10^{-23}$ J K$^{-1}$</td>
</tr>
<tr>
<td>velocità della luce</td>
<td>$c = 2.998 \times 10^8$ m s$^{-1}$</td>
</tr>
<tr>
<td>costante dielettrica nel vuoto</td>
<td>$\varepsilon_0 = 8.85419 \times 10^{-12}$ F m$^{-1}$</td>
</tr>
<tr>
<td>costante di Stephan-Boltzmann</td>
<td>$\sigma = 5.67 \times 10^{-8}$ W m$^{-2}$ K$^{-4}$</td>
</tr>
<tr>
<td>costante di Wien</td>
<td>$\omega_W = 2.8 \times 10^{-3}$ K m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Si</th>
<th>Ge</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.7</td>
<td>16</td>
</tr>
<tr>
<td>1.45×10^{10}</td>
<td>2.4×10^{13}</td>
</tr>
<tr>
<td>1.12</td>
<td>0.66</td>
</tr>
<tr>
<td>2.8×10^{19}</td>
<td>1.04×10^{19}</td>
</tr>
<tr>
<td>1.04×10^{19}</td>
<td>0.6×10^{19}</td>
</tr>
</tbody>
</table>